Suppr超能文献

一种用于癌症亚型分类的密集连接框架。

A densely connected framework for cancer subtype classification.

作者信息

Li Yu, Zheng Denggao, Sun Kaijie, Qin Chi, Duan Yuchen, Zhou Qingqing, Yin Yunxia, Kan Hongxing, Hu Jili

机构信息

School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, China.

Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China.

出版信息

BMC Bioinformatics. 2025 Jul 18;26(1):183. doi: 10.1186/s12859-025-06230-0.

Abstract

BACKGROUND

Reliable identification of cancer subtypes is crucial for devising personalized treatment strategies. Integrating multi-omics data has proven to be an effective method for analyzing cancer subtypes. By combining molecular information across various layers, a more comprehensive understanding of biological characteristics and disease mechanisms can be achieved.

RESULTS

We propose DEGCN, a novel deep learning model that integrates a three-channel Variational Autoencoder (VAE) for multi-omics dimensionality reduction and a densely connected Graph Convolutional Network (GCN) for effective subtype classification. DEGCN leverages the complementary strengths of non-linear feature extraction and graph-based relational learning, enabling accurate and robust classification of renal cancer subtypes. Experimental results demonstrate that DEGCN achieves a cross-validated classification accuracy of 97.06% ± 2.04% on renal cancer data, outperforming conventional machine learning algorithms and state-of-the-art deep learning models. Moreover, its generalization ability is validated on breast and gastric cancer datasets from TCGA, with cross-validated classification accuracies of 89.82% ± 2.29% and 88.64% ± 5.24%, respectively, indicating strong cross-cancer predictive performance.

CONCLUSION

The study highlights the outstanding performance of DEGCN in heterogeneous data integration and classification accuracy, demonstrating the model's potential in cancer subtype prediction and its application in guiding clinical treatment.

摘要

背景

可靠地识别癌症亚型对于制定个性化治疗策略至关重要。整合多组学数据已被证明是分析癌症亚型的有效方法。通过整合不同层面的分子信息,可以更全面地了解生物学特征和疾病机制。

结果

我们提出了DEGCN,这是一种新型深度学习模型,它集成了用于多组学降维的三通道变分自编码器(VAE)和用于有效亚型分类的密集连接图卷积网络(GCN)。DEGCN利用非线性特征提取和基于图的关系学习的互补优势,能够对肾癌亚型进行准确且稳健的分类。实验结果表明,DEGCN在肾癌数据上的交叉验证分类准确率达到97.06%±2.04%,优于传统机器学习算法和当前最先进的深度学习模型。此外,其泛化能力在来自TCGA的乳腺癌和胃癌数据集上得到验证,交叉验证分类准确率分别为89.82%±2.29%和88.64%±5.24%,表明具有强大的跨癌症预测性能。

结论

该研究突出了DEGCN在异构数据集成和分类准确率方面的卓越性能,证明了该模型在癌症亚型预测中的潜力及其在指导临床治疗中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验