Suppr超能文献

针对精神卫生保健领域数字分诊辅助的定制大型语言模型的开发。

Model development for bespoke large language models for digital triage assistance in mental health care.

机构信息

Department of Psychiatry, University of Oxford, Oxford, United Kingdom.

Department of Psychiatry, University of Oxford, Oxford, United Kingdom.

出版信息

Artif Intell Med. 2024 Nov;157:102988. doi: 10.1016/j.artmed.2024.102988. Epub 2024 Sep 29.

Abstract

Contemporary large language models (LLMs) may have utility for processing unstructured, narrative free-text clinical data contained in electronic health records (EHRs) - a particularly important use-case for mental health where a majority of routinely-collected patient data lacks structured, machine-readable content. A significant problem for the United Kingdom's National Health Service (NHS) are the long waiting lists for specialist mental healthcare. According to NHS data (NHS Digital, 2024), in each month of 2023, there were between 370,000 and 470,000 individual new referrals into secondary mental healthcare services. Referrals must be triaged by clinicians, using clinical information contained in the patient's EHR to arrive at a decision about the most appropriate mental healthcare team to assess and potentially treat these patients. The ability to efficiently recommend a relevant team by ingesting potentially voluminous clinical notes could help services both reduce referral waiting times and with the right technology, improve the evidence available to justify triage decisions. We present and evaluate three different approaches for LLM-based, end-to-end ingestion of variable-length clinical EHR data to assist clinicians when triaging referrals. Our model is able to deliver triage recommendations consistent with existing clinical practices and its architecture was implemented on a single GPU, making it practical for implementation in resource-limited NHS environments where private implementations of LLM technology will be necessary to ensure confidential clinical data are appropriately controlled and governed. Code available at: https://github.com/NtaylorOX/BespokeLLM_Triage.

摘要

当代的大型语言模型(LLM)可能在处理电子健康记录(EHR)中包含的非结构化、无叙事的自由文本临床数据方面具有实用性 - 这是心理健康领域的一个特别重要的用例,因为大多数常规收集的患者数据缺乏结构化、可机器读取的内容。英国国民保健服务(NHS)面临的一个重大问题是精神保健专科的候诊名单很长。根据 NHS 数据(NHS Digital,2024 年),在 2023 年的每个月,二级精神保健服务的新转诊人数在 370,000 到 470,000 之间。转诊必须由临床医生进行分诊,使用患者 EHR 中包含的临床信息来决定最适合评估和可能治疗这些患者的精神保健团队。通过摄入潜在大量的临床笔记来高效推荐相关团队的能力可以帮助服务机构缩短转诊等待时间,并且通过正确的技术,改善用于证明分诊决策的现有证据。我们提出并评估了三种基于 LLM 的、端到端的、可变长度临床 EHR 数据摄入方法,以帮助临床医生在分诊转诊时做出决策。我们的模型能够提供与现有临床实践一致的分诊建议,其架构是在单个 GPU 上实现的,因此在资源有限的 NHS 环境中实施是可行的,在这些环境中,为了确保机密临床数据得到适当的控制和管理,将需要私人实施 LLM 技术。代码可在 https://github.com/NtaylorOX/BespokeLLM_Triage 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验