Suppr超能文献

评估生成式人工智能在临床病理学实践中的应用:机遇与未来发展方向

Evaluating Use of Generative Artificial Intelligence in Clinical Pathology Practice: Opportunities and the Way Forward.

作者信息

McCaffrey Peter, Jackups Ronald, Seheult Jansen, Zaydman Mark A, Balis Ulysses, Thaker Harshwardhan M, Rashidi Hooman, Gullapalli Rama R

机构信息

From the Departments of Pathology (McCaffrey, Thaker) and Radiology (McCaffrey), University of Texas Medical Branch, Galveston.

the Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (Jackups, Zaydman).

出版信息

Arch Pathol Lab Med. 2025 Feb 1;149(2):130-141. doi: 10.5858/arpa.2024-0208-RA.

Abstract

CONTEXT.—: Generative artificial intelligence (GAI) technologies are likely to dramatically impact health care workflows in clinical pathology (CP). Applications in CP include education, data mining, decision support, result summaries, and patient trend assessments.

OBJECTIVE.—: To review use cases of GAI in CP, with a particular focus on large language models. Specific examples are provided for the applications of GAI in the subspecialties of clinical chemistry, microbiology, hematopathology, and molecular diagnostics. Additionally, the review addresses potential pitfalls of GAI paradigms.

DATA SOURCES.—: Current literature on GAI in health care was reviewed broadly. The use case scenarios for each CP subspecialty review common data sources generated in each subspecialty. The potential for utilization of CP data in the GAI context was subsequently assessed, focusing on issues such as future reporting paradigms, impact on quality metrics, and potential for translational research activities.

CONCLUSIONS.—: GAI is a powerful tool with the potential to revolutionize health care for patients and practitioners alike. However, GAI must be implemented with much caution considering various shortcomings of the technology such as biases, hallucinations, practical challenges of implementing GAI in existing CP workflows, and end-user acceptance. Human-in-the-loop models of GAI implementation have the potential to revolutionize CP by delivering deeper, meaningful insights into patient outcomes both at an individual and a population level.

摘要

背景

生成式人工智能(GAI)技术可能会对临床病理学(CP)的医疗工作流程产生巨大影响。CP中的应用包括教育、数据挖掘、决策支持、结果总结和患者趋势评估。

目的

回顾GAI在CP中的用例,特别关注大语言模型。提供了GAI在临床化学、微生物学、血液病理学和分子诊断等亚专业应用的具体示例。此外,该综述还探讨了GAI范式的潜在陷阱。

数据来源

广泛回顾了当前关于医疗保健中GAI的文献。每个CP亚专业的用例场景回顾了每个亚专业中生成的常见数据源。随后评估了在GAI背景下利用CP数据的潜力,重点关注未来报告范式、对质量指标的影响以及转化研究活动的潜力等问题。

结论

GAI是一种强大的工具,有可能为患者和从业者带来医疗保健的变革。然而,考虑到该技术的各种缺点,如偏差、幻觉、在现有CP工作流程中实施GAI的实际挑战以及最终用户的接受度,必须谨慎实施GAI。GAI实施的人在回路模型有可能通过在个体和人群层面提供对患者结果更深入、有意义的见解来彻底改变CP。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验