Suppr超能文献

使用明确的深度学习估计传统风险因素对英国生物银行视网膜图像进行心血管风险分析,与实际风险测量相比如何?一项前瞻性队列研究设计。

Is cardiovascular risk profiling from UK Biobank retinal images using explicit deep learning estimates of traditional risk factors equivalent to actual risk measurements? A prospective cohort study design.

机构信息

Osaka University Institute for Datability Science, Suita, Japan.

Department of Ophthalmology, Osaka University Medical School, Suita, Japan.

出版信息

BMJ Open. 2024 Oct 8;14(10):e078609. doi: 10.1136/bmjopen-2023-078609.

Abstract

OBJECTIVE

Despite extensive exploration of potential biomarkers of cardiovascular diseases (CVDs) derived from retinal images, it remains unclear how retinal images contribute to CVD risk profiling and how the results can inform lifestyle modifications. Therefore, we aimed to determine the performance of cardiovascular risk prediction model from retinal images via explicitly estimating 10 traditional CVD risk factors and compared with the model based on actual risk measurements.

DESIGN

A prospective cohort study design.

SETTING

The UK Biobank (UKBB), a prospective cohort study, following the health conditions including CVD outcomes of adults recruited between 2006 and 2010.

PARTICIPANTS

A subset of data from the UKBB which contains 52 297 entries with retinal images and 5-year cumulative incidence of major adverse cardiovascular events (MACE) was used. Our dataset is split into 3:1:1 as training set (n=31 403), validation set (n=10 420) and testing set (n=10 474). We developed a deep learning (DL) model to predict 5-year MACE using a two-stage DL neural network.

PRIMARY AND SECONDARY OUTCOME MEASURES

We computed accuracy, area under the receiver operating characteristic curve (AUC) and compared variations in the risk prediction models combining CVD risk factors and retinal images.

RESULTS

The first-stage DL model demonstrated that the 10 CVD risk factors can be estimated from a given retinal image with an accuracy ranging between 65.2% and 89.8% (overall AUC of 0.738 with 95% CI: 0.710 to 0.766). In MACE prediction, our model outperformed the traditional score-based models, with 8.2% higher AUC than Systematic COronary Risk Evaluation (SCORE), 3.5% for SCORE 2 and 7.1% for the Framingham Risk Score (with p value<0.05 for all three comparisons).

CONCLUSIONS

Our algorithm estimates the 5-year risk of MACE based on retinal images, while explicitly presenting which risk factors should be checked and intervened. This two-stage approach provides human interpretable information between stages, which helps clinicians gain insights into the screening process copiloting with the DL model.

摘要

目的

尽管已经广泛探索了源自视网膜图像的心血管疾病(CVD)潜在生物标志物,但仍不清楚视网膜图像如何有助于 CVD 风险分析,以及结果如何为生活方式改变提供信息。因此,我们旨在通过明确估计 10 种传统 CVD 风险因素来确定基于视网膜图像的心血管风险预测模型的性能,并与基于实际风险测量的模型进行比较。

设计

前瞻性队列研究设计。

设置

英国生物库(UKBB)是一项前瞻性队列研究,跟踪包括 CVD 结局在内的成年人的健康状况,参与者于 2006 年至 2010 年期间招募。

参与者

使用 UKBB 的一个子集数据,其中包含 52297 个条目,包括视网膜图像和 5 年累积主要不良心血管事件(MACE)发生率。我们的数据集分为 3:1:1 作为训练集(n=31403)、验证集(n=10420)和测试集(n=10474)。我们开发了一种深度学习(DL)模型,使用两阶段 DL 神经网络来预测 5 年 MACE。

主要和次要结果测量

我们计算了准确性、接收器工作特征曲线下的面积(AUC),并比较了结合 CVD 风险因素和视网膜图像的风险预测模型的变化。

结果

第一阶段 DL 模型表明,从给定的视网膜图像中可以以 65.2%至 89.8%的准确度估计 10 种 CVD 风险因素(整体 AUC 为 0.738,95%CI:0.710 至 0.766)。在 MACE 预测中,我们的模型优于传统的基于评分的模型,AUC 比系统性冠状动脉风险评估(SCORE)高 8.2%,比 SCORE 2 高 3.5%,比 Framingham 风险评分高 7.1%(所有三个比较均具有统计学意义)。

结论

我们的算法基于视网膜图像估计 5 年 MACE 风险,同时明确显示应检查和干预哪些风险因素。这种两阶段方法在各阶段之间提供了人类可解释的信息,有助于临床医生在与 DL 模型合作的筛查过程中获得深入了解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd1e/11474751/43c84b55c3bf/bmjopen-14-10-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验