Suppr超能文献

酶工程细菌群落将半纤维素高效转化为高价值产品和电力。

Efficient conversion of hemicellulose into high-value product and electric power by enzyme-engineered bacterial consortia.

机构信息

Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.

Institute for Chemical Biology & Biosensing, and College of Life Sciences, Qingdao University, Qingdao, 266071, China.

出版信息

Nat Commun. 2024 Oct 9;15(1):8764. doi: 10.1038/s41467-024-53129-0.

Abstract

As an abundant agricultural and forestry biomass resource, hemicelluloses are hard to be effectively degraded and utilized by microorganisms due to the constraints of membrane and metabolic regulations. Herein, we report a synthetic extracellular metabolic pathway with hemicellulose-degrading-enzymes controllably displayed on Escherichia coli surface as engineered bacterial consortia members for efficient utilization of xylan, the most abundant component in hemicellulose. Further, we develop a hemicellulose/O microbial fuel cell (MFC) configuring of enzyme-engineered bacterial consortia based bioanode and bacterial-displayed laccase based biocathode. The optimized MFC exhibited an open-circuit voltage of 0.71 V and a maximum power density (P) of 174.33 ± 4.56 µW cm. Meanwhile, 46.6% (w/w) α-ketoglutarate was produced in this hemicellulose fed-MFC. Besides, the MFC retained over 95% of the P during 6 days' operation. Therefore, this work establishes an effective and sustainable one-pot process for catalyzing renewable biomass into high-value products and electricity in an environmentally-friendly way.

摘要

作为一种丰富的农林生物质资源,由于膜和代谢调节的限制,半纤维素很难被微生物有效降解和利用。在此,我们报告了一种合成的细胞外代谢途径,其中半纤维素降解酶被可控地展示在大肠杆菌表面,作为工程菌共生物的成员,以有效利用半纤维素中最丰富的成分木聚糖。此外,我们开发了一种以酶工程菌共生物为基础的生物阳极和以细菌展示漆酶为基础的生物阴极的半纤维素/O 微生物燃料电池 (MFC)。优化后的 MFC 开路电压为 0.71V,最大功率密度 (P) 为 174.33±4.56µW cm。同时,在这种半纤维素供能的 MFC 中产生了 46.6%(w/w)的α-酮戊二酸。此外,该 MFC 在 6 天的运行中保持了超过 95%的 P。因此,这项工作建立了一种有效和可持续的一锅法工艺,用于以环保的方式将可再生生物质催化转化为高价值产品和电力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b85e/11464693/f7dbbabb1fb6/41467_2024_53129_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验