Mazzella Lorry, Mangeat Thomas, Giroussens Guillaume, Rogez Benoit, Li Hao, Creff Justine, Saadaoui Mehdi, Martins Carla, Bouzignac Ronan, Labouesse Simon, Idier Jérome, Galland Frédéric, Allain Marc, Sentenac Anne, LeGoff Loïc
Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France.
LITC Core Facility, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France.
Light Sci Appl. 2024 Oct 10;13(1):285. doi: 10.1038/s41377-024-01612-0.
The ultimate aim of fluorescence microscopy is to achieve high-resolution imaging of increasingly larger biological samples. Extended depth of field presents a potential solution to accelerate imaging of large samples when compression of information along the optical axis is not detrimental to the interpretation of images. We have implemented an extended depth of field (EDF) approach in a random illumination microscope (RIM). RIM uses multiple speckled illuminations and variance data processing to double the resolution. It is particularly adapted to the imaging of thick samples as it does not require the knowledge of illumination patterns. We demonstrate highly-resolved projective images of biological tissues and cells. Compared to a sequential scan of the imaged volume with conventional 2D-RIM, EDF-RIM allows an order of magnitude improvement in speed and light dose reduction, with comparable resolution. As the axial information is lost in an EDF modality, we propose a method to retrieve the sample topography for samples that are organized in cell sheets.
荧光显微镜的最终目标是对越来越大的生物样本实现高分辨率成像。当沿光轴的信息压缩对图像解释无害时,扩展景深为加速大样本成像提供了一种潜在的解决方案。我们在随机照明显微镜(RIM)中实现了一种扩展景深(EDF)方法。RIM使用多个散斑照明和方差数据处理来将分辨率提高一倍。它特别适用于厚样本的成像,因为它不需要照明模式的知识。我们展示了生物组织和细胞的高分辨率投影图像。与使用传统二维RIM对成像体积进行顺序扫描相比,EDF-RIM在速度上提高了一个数量级,光剂量降低,且分辨率相当。由于在EDF模式下轴向信息会丢失,我们提出了一种方法来检索细胞片层中组织的样本的形貌。