LITC Core Facility, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.
Institut Fresnel, Aix Marseille Université, CNRS, Centrale Marseille, Marseille, France.
Cell Rep Methods. 2021 Apr 30;1(1):100009. doi: 10.1016/j.crmeth.2021.100009. eCollection 2021 May 24.
Current super-resolution microscopy (SRM) methods suffer from an intrinsic complexity that might curtail their routine use in cell biology. We describe here random illumination microscopy (RIM) for live-cell imaging at super-resolutions matching that of 3D structured illumination microscopy, in a robust fashion. Based on speckled illumination and statistical image reconstruction, easy to implement and user-friendly, RIM is unaffected by optical aberrations on the excitation side, linear to brightness, and compatible with multicolor live-cell imaging over extended periods of time. We illustrate the potential of RIM on diverse biological applications, from the mobility of proliferating cell nuclear antigen (PCNA) in U2OS cells and kinetochore dynamics in mitotic cells to the 3D motion of myosin minifilaments deep inside tissues. RIM's inherent simplicity and extended biological applicability, particularly for imaging at increased depths, could help make SRM accessible to biology laboratories.
目前的超分辨率显微镜(SRM)方法存在固有复杂性,这可能会限制它们在细胞生物学中的常规使用。我们在这里描述了用于活细胞成像的随机照明显微镜(RIM),其超分辨率与三维结构照明显微镜相当,而且具有稳健的特点。基于散斑照明和统计图像重建,易于实现和用户友好,RIM 不受激发侧的像差影响,与亮度呈线性关系,并且兼容长时间的多色活细胞成像。我们在各种生物学应用中说明了 RIM 的潜力,包括 U2OS 细胞中增殖细胞核抗原(PCNA)的迁移和有丝分裂细胞中着丝粒动力学,以及组织深处肌球蛋白微丝的三维运动。RIM 的固有简单性和广泛的生物学适用性,特别是在增加深度的成像方面,可能有助于使 SRM 易于生物学实验室使用。