School of Life Sciences, Tsinghua University, Beijing, China.
Faculty of Mathematics and Informatics, Technical University Freiberg, Freiberg, Germany.
Nature. 2024 Oct;634(8036):1204-1210. doi: 10.1038/s41586-024-07990-0. Epub 2024 Oct 9.
Multivesicular bodies are key endosomal compartments implicated in cellular quality control through their degradation of membrane-bound cargo proteins. The ATP-consuming ESCRT protein machinery mediates the capture and engulfment of membrane-bound cargo proteins through invagination and scission of multivesicular-body membranes to form intraluminal vesicles. Here we report that the plant ESCRT component FREE1 forms liquid-like condensates that associate with membranes to drive intraluminal vesicle formation. We use a minimal physical model, reconstitution experiments and in silico simulations to identify the dynamics of this process and describe intermediate morphologies of nascent intraluminal vesicles. Furthermore, we find that condensate-wetting-induced line tension forces and membrane asymmetries are sufficient to mediate scission of the membrane neck without the ESCRT protein machinery or ATP consumption. Genetic manipulation of the ESCRT pathway in several eukaryotes provides additional evidence for condensate-mediated membrane scission in vivo. We find that the interplay between condensate and machinery-mediated scission mechanisms is indispensable for osmotic stress tolerance in plants. We propose that condensate-mediated scission represents a previously undescribed scission mechanism that depends on the physicomolecular properties of the condensate and is involved in a range of trafficking processes. More generally, FREE1 condensate-mediated membrane scission in multivesicular-body biogenesis highlights the fundamental role of wetting in intracellular dynamics and organization.
多泡体是细胞内质量控制的关键内体区室,通过降解膜结合货物蛋白发挥作用。ATP 消耗型 ESCRT 蛋白机制通过多泡体膜的内陷和断裂来捕获和吞噬膜结合货物蛋白,从而形成腔内囊泡。在这里,我们报告植物 ESCRT 成分 FREE1 形成液态凝聚物,与膜结合以驱动腔内囊泡的形成。我们使用最小物理模型、重组实验和计算机模拟来确定这个过程的动力学,并描述新生腔内囊泡的中间形态。此外,我们发现凝聚物润湿诱导的线张力和膜不对称性足以介导膜颈的断裂,而不需要 ESCRT 蛋白机制或 ATP 消耗。对几种真核生物中 ESCRT 途径的遗传操作提供了体内凝聚物介导的膜断裂的额外证据。我们发现凝聚物和机械介导的断裂机制之间的相互作用对于植物的耐渗压胁迫是必不可少的。我们提出,凝聚物介导的断裂代表了一种以前未描述的断裂机制,该机制依赖于凝聚物的物理化学性质,并参与了一系列运输过程。更普遍地说,多泡体生物发生中 FREE1 凝聚物介导的膜断裂突出了润湿在细胞内动力学和组织中的基本作用。