Suppr超能文献

探讨二硫键相关基因在肺动脉高压中的诊断和免疫浸润作用。

Exploring the diagnostic and immune infiltration roles of disulfidptosis related genes in pulmonary hypertension.

机构信息

Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China.

Institute for Hypertension, Soochow University, Suzhou, 215000, China.

出版信息

Respir Res. 2024 Oct 9;25(1):365. doi: 10.1186/s12931-024-02978-w.

Abstract

BACKGROUND

Pulmonary hypertension (PH) is marked by elevated pulmonary artery pressures due to various causes, impacting right heart function and survival. Disulfidptosis, a newly recognized cell death mechanism, may play a role in PH, but its associated genes (DiGs) are not well understood in this context. This study aims to define the diagnostic relevance of DiGs in PH.

METHODS

Using GSE11726 data, we analyzed DiGs and their immune characteristics to identify core genes influencing PH progression. Various machine learning models, including RF, SVM, GLM, and XGB, were compared to determine the most effective diagnostic model. Validation used datasets GSE57345 and GSE48166. Additionally, a CeRNA network was established, and a hypoxia-induced PH rat model was used for experimental validation with Western blot analysis.

RESULTS

12 DiGs significantly associated with PH were identified. The XGB model excelled in diagnostic accuracy (AUC = 0.958), identifying core genes DSTN, NDUFS1, RPN1, TLN1, and MYH10. Validation datasets confirmed the model's effectiveness. A CeRNA network involving these genes, 40 miRNAs, and 115 lncRNAs was constructed. Drug prediction suggested therapeutic potential for folic acid, supported by strong molecular docking results. Experimental validation in a rat model aligned with these findings.

CONCLUSION

We uncovered the distinct expression patterns of DiGs in PH, identified core genes utilizing an XGB machine-learning model, and established a CeRNA network. Drugs targeting the core genes were predicted and subjected to molecular docking. Experimental validation was also conducted for these core genes.

摘要

背景

肺动脉高压(PH)是由于各种原因导致肺动脉压力升高,影响右心功能和生存的一种疾病。二硫化物病(Disulfidptosis)是一种新发现的细胞死亡机制,可能在 PH 中起作用,但在这种情况下,其相关基因(DiGs)尚未得到很好的理解。本研究旨在定义 DiGs 在 PH 中的诊断相关性。

方法

使用 GSE11726 数据,我们分析了 DiGs 及其免疫特征,以确定影响 PH 进展的核心基因。比较了各种机器学习模型,包括 RF、SVM、GLM 和 XGB,以确定最有效的诊断模型。使用数据集 GSE57345 和 GSE48166 进行验证。此外,建立了一个 CeRNA 网络,并使用 Western blot 分析对缺氧诱导的 PH 大鼠模型进行了实验验证。

结果

确定了 12 个与 PH 显著相关的 DiGs。XGB 模型在诊断准确性(AUC=0.958)方面表现出色,鉴定出核心基因 DSTN、NDUFS1、RPN1、TLN1 和 MYH10。验证数据集证实了该模型的有效性。构建了一个包含这些基因、40 个 miRNA 和 115 个 lncRNA 的 CeRNA 网络。药物预测表明叶酸具有治疗潜力,这得到了强大的分子对接结果的支持。在大鼠模型中的实验验证与这些发现一致。

结论

我们揭示了 DiGs 在 PH 中的独特表达模式,利用 XGB 机器学习模型鉴定出核心基因,并建立了一个 CeRNA 网络。预测了针对核心基因的药物,并进行了分子对接。还对这些核心基因进行了实验验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef57/11465917/8c97840170fe/12931_2024_2978_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验