Suppr超能文献

TransCDR:一种通过迁移学习和多模态数据融合来提高药物活性预测泛化能力的深度学习模型。

TransCDR: a deep learning model for enhancing the generalizability of drug activity prediction through transfer learning and multimodal data fusion.

机构信息

Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.

Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China.

出版信息

BMC Biol. 2024 Oct 9;22(1):227. doi: 10.1186/s12915-024-02023-8.

Abstract

BACKGROUND

Accurate and robust drug response prediction is of utmost importance in precision medicine. Although many models have been developed to utilize the representations of drugs and cancer cell lines for predicting cancer drug responses (CDR), their performances can be improved by addressing issues such as insufficient data modality, suboptimal fusion algorithms, and poor generalizability for novel drugs or cell lines.

RESULTS

We introduce TransCDR, which uses transfer learning to learn drug representations and fuses multi-modality features of drugs and cell lines by a self-attention mechanism, to predict the IC values or sensitive states of drugs on cell lines. We are the first to systematically evaluate the generalization of the CDR prediction model to novel (i.e., never-before-seen) compound scaffolds and cell line clusters. TransCDR shows better generalizability than 8 state-of-the-art models. TransCDR outperforms its 5 variants that train drug encoders (i.e., RNN and AttentiveFP) from scratch under various scenarios. The most critical contributors among multiple drug notations and omics profiles are Extended Connectivity Fingerprint and genetic mutation. Additionally, the attention-based fusion module further enhances the predictive performance of TransCDR. TransCDR, trained on the GDSC dataset, demonstrates strong predictive performance on the external testing set CCLE. It is also utilized to predict missing CDRs on GDSC. Moreover, we investigate the biological mechanisms underlying drug response by classifying 7675 patients from TCGA into drug-sensitive or drug-resistant groups, followed by a Gene Set Enrichment Analysis.

CONCLUSIONS

TransCDR emerges as a potent tool with significant potential in drug response prediction.

摘要

背景

准确且稳健的药物反应预测在精准医学中至关重要。尽管已经开发出许多模型来利用药物和癌细胞系的表示来预测癌症药物反应(CDR),但通过解决数据模态不足、融合算法不佳以及对新型药物或细胞系的泛化能力差等问题,可以提高其性能。

结果

我们引入了 TransCDR,它使用迁移学习来学习药物表示,并通过自注意力机制融合药物和细胞系的多模态特征,以预测药物在细胞系上的 IC 值或敏感状态。我们首次系统地评估了 CDR 预测模型对新型(即从未见过)化合物支架和细胞系簇的泛化能力。TransCDR 比 8 种最先进的模型具有更好的泛化能力。在各种情况下,TransCDR 都优于从 scratch 训练药物编码器(即 RNN 和 AttentiveFP)的 5 种变体。在多种药物表示和组学特征中,最重要的贡献者是扩展连通指纹和基因突变。此外,基于注意力的融合模块进一步增强了 TransCDR 的预测性能。在 GDSC 数据集上训练的 TransCDR 在外部测试集 CCLE 上表现出强大的预测性能。它还用于预测 GDSC 上缺失的 CDR。此外,我们通过将 TCGA 中的 7675 名患者分为药物敏感或药物耐药组,然后进行基因集富集分析,研究了药物反应的生物学机制。

结论

TransCDR 是一种强大的工具,具有很大的药物反应预测潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a2a/11462810/83e7b7d296f6/12915_2024_2023_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验