Suppr超能文献

DeepTTA:一种基于转换器的癌症药物反应预测模型。

DeepTTA: a transformer-based model for predicting cancer drug response.

机构信息

Department of Computer Science, Xiamen University, Xiamen 361005, China.

National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China.

出版信息

Brief Bioinform. 2022 May 13;23(3). doi: 10.1093/bib/bbac100.

Abstract

Identifying new lead molecules to treat cancer requires more than a decade of dedicated effort. Before selected drug candidates are used in the clinic, their anti-cancer activity is generally validated by in vitro cellular experiments. Therefore, accurate prediction of cancer drug response is a critical and challenging task for anti-cancer drugs design and precision medicine. With the development of pharmacogenomics, the combination of efficient drug feature extraction methods and omics data has made it possible to use computational models to assist in drug response prediction. In this study, we propose DeepTTA, a novel end-to-end deep learning model that utilizes transformer for drug representation learning and a multilayer neural network for transcriptomic data prediction of the anti-cancer drug responses. Specifically, DeepTTA uses transcriptomic gene expression data and chemical substructures of drugs for drug response prediction. Compared to existing methods, DeepTTA achieved higher performance in terms of root mean square error, Pearson correlation coefficient and Spearman's rank correlation coefficient on multiple test sets. Moreover, we discovered that anti-cancer drugs bortezomib and dactinomycin provide a potential therapeutic option with multiple clinical indications. With its excellent performance, DeepTTA is expected to be an effective method in cancer drug design.

摘要

鉴定新的治疗癌症的先导分子需要十多年的专注努力。在选定的药物候选物在临床上使用之前,通常通过体外细胞实验验证其抗癌活性。因此,准确预测癌症药物反应是癌症药物设计和精准医学的关键和具有挑战性的任务。随着药物基因组学的发展,高效药物特征提取方法和组学数据的结合使得使用计算模型来辅助药物反应预测成为可能。在这项研究中,我们提出了 DeepTTA,这是一种新颖的端到端深度学习模型,它利用转换器进行药物表示学习,以及多层神经网络进行转录组数据对抗癌药物反应的预测。具体来说,DeepTTA 使用转录组基因表达数据和药物的化学亚结构进行药物反应预测。与现有方法相比,DeepTTA 在多个测试集上的均方根误差、皮尔逊相关系数和斯皮尔曼等级相关系数方面表现出更高的性能。此外,我们发现抗癌药物硼替佐米和放线菌素 D 为多种临床适应症提供了潜在的治疗选择。凭借其出色的性能,DeepTTA 有望成为癌症药物设计的有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验