Suppr超能文献

血浆代谢组学谱与乳腺癌风险。

Plasma metabolomics profiles and breast cancer risk.

机构信息

Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY, 10032, USA.

Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.

出版信息

Breast Cancer Res. 2024 Oct 9;26(1):141. doi: 10.1186/s13058-024-01896-5.

Abstract

BACKGROUND

Breast cancer (BC) is the most common cancer in women and incidence rates are increasing; metabolomics may be a promising approach for identifying the drivers of the increasing trends that cannot be explained by changes in known BC risk factors.

METHODS

We conducted a nested case-control study (median followup 6.3 years) within the New York site of the Breast Cancer Family Registry (BCFR) (n = 40 cases and 70 age-matched controls). We conducted a metabolome-wide association study using untargeted metabolomics coupling hydrophilic interaction liquid chromatography (HILIC) and C chromatography with high-resolution mass spectrometry (LC-HRMS) to identify BC-related metabolic features.

RESULTS

We found eight metabolic features associated with BC risk. For the four metabolites negatively associated with risk, the adjusted odds ratios (ORs) ranged from 0.31 (95% confidence interval (CI): 0.14, 0.66) (L-Histidine) to 0.65 (95% CI: 0.43, 0.98) (N-Acetylgalactosamine), and for the four metabolites positively associated with risk, ORs ranged from 1.61 (95% CI: 1.04, 2.51, (m/z: 101.5813, RT: 90.4, 1,3-dibutyl-1-nitrosourea, a potential carcinogen)) to 2.20 (95% CI: 1.15, 4.23) (11-cis-Eicosenic acid). These results were no longer statistically significant after adjusting for multiple comparisons. Adding the BC-related metabolic features to a model, including age, the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) risk score improved the accuracy of BC prediction from an area under the curve (AUC) of 66% to 83%.

CONCLUSIONS

If replicated in larger prospective cohorts, these findings offer promising new ways to identify exposures related to BC and improve BC risk prediction.

摘要

背景

乳腺癌(BC)是女性最常见的癌症,发病率正在上升;代谢组学可能是一种很有前途的方法,可以识别不能用已知的 BC 风险因素变化来解释的上升趋势的驱动因素。

方法

我们在乳腺癌家族登记处(BCFR)的纽约站点(n=40 例病例和 70 例年龄匹配的对照)内进行了一项嵌套病例对照研究(中位随访 6.3 年)。我们使用非靶向代谢组学结合亲水相互作用液相色谱(HILIC)和 C 色谱与高分辨率质谱(LC-HRMS)进行了代谢组全关联研究,以确定与 BC 相关的代谢特征。

结果

我们发现了与 BC 风险相关的八个代谢特征。对于与风险呈负相关的四种代谢物,调整后的比值比(OR)范围为 0.31(95%置信区间(CI):0.14,0.66)(L-组氨酸)至 0.65(95%CI:0.43,0.98)(N-乙酰半乳糖胺),而与风险呈正相关的四种代谢物,OR 范围为 1.61(95%CI:1.04,2.51)(m/z:101.5813,RT:90.4,1,3-二丁基-1-亚硝脲,一种潜在的致癌物)至 2.20(95%CI:1.15,4.23)(11-cis-二十碳烯酸)。在进行多次比较调整后,这些结果不再具有统计学意义。将与 BC 相关的代谢特征添加到包括年龄、乳腺癌和卵巢疾病发病和携带者估计算法(BOADICEA)风险评分在内的模型中,提高了 BC 预测的准确性,曲线下面积(AUC)从 66%提高到 83%。

结论

如果在更大的前瞻性队列中得到复制,这些发现为识别与 BC 相关的暴露并改善 BC 风险预测提供了有希望的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c92b/11463119/cdbf09839243/13058_2024_1896_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验