Suppr超能文献

用有机溴配位的HO-Zn-MeOH簇离子稳定的薄锌电极用于实用型锌金属软包电池。

Thin Zinc Electrodes Stabilized with Organobromine-Partnered HO-Zn-MeOH Cluster Ions for Practical Zinc-Metal Pouch Cells.

作者信息

Ji Jie, Du Haoran, Zhu Zhenglu, Qi Xiaoqun, Zhou Fei, Li Rui, Jiang Ruining, Qie Long, Huang Yunhui

机构信息

State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074.

Key Laboratory of Materials and Technologies for Advanced Batteries, School of Energy Materials and Chemical Engineering, Hefei University, Hefei, Anhui, 230601, China.

出版信息

Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202414562. doi: 10.1002/anie.202414562. Epub 2024 Nov 9.

Abstract

The utilization of thin zinc (Zn) anodes with a high depth of discharge is an effective strategy to increase the energy density of aqueous Zn metal batteries (ZMBs), but challenged by the poor reversibility of Zn electrode due to the serious Zn-consuming side reactions at the Zn||electrolyte interface. Here, we introduce 2-bromomethyl-1,3-dioxolane (BDOL) and methanol (MeOH) as electrolyte additive into aqueous ZnSO electrolyte. In the as-formulated electrolyte, BDOL with a strong electron-withdrawing group (-CHBr) tends to pair with the HO-Zn-MeOH complex, leading to the formation of organobromine-partnered HO-Zn-MeOH cluster ions. During the Zn electrodeposition process, the formed ZnO-dominated by-products induce the polymerization of BDOL monomers, which are previously adsorbed on the electrode. As a result, a uniform dual-layer SEI with ZnO-dominated outer layer and polyether-dominated inner layer is built on the surface of Zn electrode. With such an in situ formed dual-layer SEI, the Zn||MgMnO ⋅ 2.7HO pouch cell using a 10-um Zn anode (corresponding to a low negative to positive areal capacity ratio of 3.56) successfully operated for 300 cycles with a high capacity retention of 86 %, promising a high practical energy density of >120 Wh/kg (based on the total mass of Zn and MgMnO ⋅ 2.7HO).

摘要

使用具有高放电深度的薄锌(Zn)阳极是提高水系锌金属电池(ZMB)能量密度的有效策略,但由于Zn||电解质界面处严重的锌消耗副反应,锌电极的可逆性较差,这对该策略构成了挑战。在此,我们将2-溴甲基-1,3-二氧戊环(BDOL)和甲醇(MeOH)作为电解质添加剂引入到水系ZnSO电解质中。在配制的电解质中,具有强吸电子基团(-CHBr)的BDOL倾向于与HO-Zn-MeOH络合物配对,导致形成有机溴配位的HO-Zn-MeOH簇离子。在锌电沉积过程中,形成的以ZnO为主的副产物诱导了先前吸附在电极上的BDOL单体发生聚合。结果,在锌电极表面形成了一个均匀的双层固态电解质界面(SEI),其外层以ZnO为主,内层以聚醚为主。通过这种原位形成的双层SEI,使用10-um锌阳极(对应于低的负极与正极面积容量比3.56)的Zn||MgMnO₂·2.7H₂O软包电池成功运行了300次循环,具有86%的高容量保持率,有望实现大于120 Wh/kg的高实际能量密度(基于锌和MgMnO₂·2.7H₂O的总质量)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验