Suppr超能文献

充分利用大型定性数据集:分析方法的实时系统综述

Making the most of big qualitative datasets: a living systematic review of analysis methods.

作者信息

Chandrasekar Abinaya, Clark Sigrún Eyrúnardóttir, Martin Sam, Vanderslott Samantha, Flores Elaine C, Aceituno David, Barnett Phoebe, Vindrola-Padros Cecilia, Vera San Juan Norha

机构信息

Rapid Research, Evaluation, and Appraisal Lab (RREAL), Department of Targeted Intervention, University College London, London, United Kingdom.

Oxford Vaccine Group, University of Oxford and NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom.

出版信息

Front Big Data. 2024 Sep 25;7:1455399. doi: 10.3389/fdata.2024.1455399. eCollection 2024.

Abstract

INTRODUCTION

Qualitative data provides deep insights into an individual's behaviors and beliefs, and the contextual factors that may shape these. Big qualitative data analysis is an emerging field that aims to identify trends and patterns in large qualitative datasets. The purpose of this review was to identify the methods used to analyse large bodies of qualitative data, their cited strengths and limitations and comparisons between manual and digital analysis approaches.

METHODS

A multifaceted approach has been taken to develop the review relying on academic, gray and media-based literature, using approaches such as iterative analysis, frequency analysis, text network analysis and team discussion.

RESULTS

The review identified 520 articles that detailed analysis approaches of big qualitative data. From these publications a diverse range of methods and software used for analysis were identified, with thematic analysis and basic software being most common. Studies were most commonly conducted in high-income countries, and the most common data sources were open-ended survey responses, interview transcripts, and first-person narratives.

DISCUSSION

We identified an emerging trend to expand the sources of qualitative data (e.g., using social media data, images, or videos), and develop new methods and software for analysis. As the qualitative analysis field may continue to change, it will be necessary to conduct further research to compare the utility of different big qualitative analysis methods and to develop standardized guidelines to raise awareness and support researchers in the use of more novel approaches for big qualitative analysis.

SYSTEMATIC REVIEW REGISTRATION

https://osf.io/hbvsy/?view_only=.

摘要

引言

定性数据能深入洞察个体的行为和信念,以及可能塑造这些行为和信念的背景因素。大型定性数据分析是一个新兴领域,旨在识别大型定性数据集中的趋势和模式。本综述的目的是确定用于分析大量定性数据的方法、其被提及的优势和局限性,以及手动分析方法与数字分析方法之间的比较。

方法

采用了多方面的方法来开展本综述,依赖学术文献、灰色文献和基于媒体的文献,运用迭代分析、频率分析、文本网络分析和团队讨论等方法。

结果

该综述确定了520篇详细阐述大型定性数据分析方法的文章。从这些出版物中,识别出了用于分析的多种方法和软件,其中主题分析和基础软件最为常见。研究大多在高收入国家进行,最常见的数据来源是开放式调查回复、访谈记录和第一人称叙述。

讨论

我们发现了一个新兴趋势,即扩大定性数据的来源(例如使用社交媒体数据、图像或视频),并开发新的分析方法和软件。由于定性分析领域可能会持续变化,有必要进行进一步研究,以比较不同大型定性分析方法的效用,并制定标准化指南,以提高认识并支持研究人员使用更新颖的大型定性分析方法。

系统综述注册

https://osf.io/hbvsy/?view_only=.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c431/11461344/0265f77ea97f/fdata-07-1455399-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验