Suppr超能文献

皮提亚:非随机DNA修复可实现可预测的CRISPR/Cas9整合及基因编辑。

Pythia: Non-random DNA repair allows predictable CRISPR/Cas9 integration and gene editing.

作者信息

Naert Thomas, Yamamoto Taiyo, Han Shuting, Horn Melanie, Bethge Phillip, Vladimirov Nikita, Voigt Fabian F, Figueiro-Silva Joana, Bachmann-Gagescu Ruxandra, Helmchen Fritjof, Lienkamp Soeren S

机构信息

Institute of Anatomy, University of Zurich, Zurich, Switzerland.

Present address: Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.

出版信息

bioRxiv. 2024 Sep 23:2024.09.23.614424. doi: 10.1101/2024.09.23.614424.

Abstract

CRISPR-based genome engineering holds enormous promise for basic science and therapeutic applications. Integrating and editing DNA sequences is still challenging in many cellular contexts, largely due to insufficient control of the repair process. We find that repair at the genome-cargo interface is predictable by deep-learning models and adheres to sequence context specific rules. Based on predictions, we devised a strategy of triplet base-pair repeat repair arms that correspond to microhomologies at double-strand breaks (trimologies), which facilitated integration of large cargo (>2 kb) and protected the targeted locus and transgene from excessive damage. Successful integrations occurred in >30 loci in human cells and in models. Germline transmissible transgene integration in , and endogenous tagging of tubulin in adult mice brains demonstrated integration during early embryonic cleavage and in non-dividing differentiated cells. Further, optimal repair arms for single- or double nucleotide edits were predictable, and facilitated small edits and using oligonucleotide templates. We provide a design-tool (Pythia, pythia-editing.org) to optimize custom integration, tagging or editing strategies. Pythia will facilitate genomic integration and editing for experimental and therapeutic purposes for a wider range of target cell types and applications.

摘要

基于CRISPR的基因组工程在基础科学和治疗应用方面具有巨大潜力。在许多细胞环境中,整合和编辑DNA序列仍然具有挑战性,这主要是由于对修复过程的控制不足。我们发现,深度学习模型可以预测基因组与载体界面处的修复情况,并且该修复遵循序列上下文特定规则。基于这些预测,我们设计了一种三联体碱基对重复修复臂策略,该策略对应于双链断裂处的微同源性(三碱基重复序列),这有助于大载体(>2 kb)的整合,并保护目标基因座和转基因免受过度损伤。成功的整合发生在人类细胞的30多个基因座以及动物模型中。在小鼠中实现了种系可传递的转基因整合,并且在成年小鼠大脑中对微管蛋白进行了内源性标记,这证明了在早期胚胎分裂期间以及非分裂分化细胞中均可发生整合。此外,单核苷酸或双核苷酸编辑的最佳修复臂是可预测的,并且使用寡核苷酸模板促进了小编辑。我们提供了一个设计工具(Pythia,pythia-editing.org)来优化定制的整合、标记或编辑策略。Pythia将促进为更广泛的靶细胞类型和应用进行实验和治疗目的的基因组整合和编辑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9808/11463480/29e3408bf8b3/nihpp-2024.09.23.614424v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验