Zhao Jia, Zhang Xiangyu, Wang Gefei, Lin Yingxin, Liu Tianyu, Chang Rui B, Zhao Hongyu
Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA.
Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.
bioRxiv. 2024 Sep 25:2024.09.23.614539. doi: 10.1101/2024.09.23.614539.
Recent advances in spatial transcriptomics technologies have led to a growing number of diverse datasets, offering unprecedented opportunities to explore tissue organizations and functions within spatial contexts. However, it remains a significant challenge to effectively integrate and interpret these data, often originating from different samples, technologies, and developmental stages. In this paper, we present INSPIRE, a deep learning method for integrative analyses of multiple spatial transcriptomics datasets to address this challenge. With designs of graph neural networks and an adversarial learning mechanism, INSPIRE enables spatially informed and adaptable integration of data from varying sources. By incorporating non-negative matrix factorization, INSPIRE uncovers interpretable spatial factors with corresponding gene programs, revealing tissue architectures, cell type distributions and biological processes. We demonstrate the capabilities of INSPIRE by applying it to human cortex slices from different samples, mouse brain slices with complementary views, mouse hippocampus and embryo slices generated through different technologies, and spatiotemporal organogenesis atlases containing half a million spatial spots. INSPIRE shows superior performance in identifying detailed biological signals, effectively borrowing information across distinct profiling technologies, and elucidating dynamical changes during embryonic development. Furthermore, we utilize INSPIRE to build 3D models of tissues and whole organisms from multiple slices, demonstrating its power and versatility.
空间转录组学技术的最新进展催生了越来越多不同的数据集,为在空间背景下探索组织结构和功能提供了前所未有的机会。然而,有效整合和解读这些通常来自不同样本、技术和发育阶段的数据,仍然是一项重大挑战。在本文中,我们提出了INSPIRE,一种用于综合分析多个空间转录组学数据集的深度学习方法,以应对这一挑战。通过图神经网络和对抗学习机制的设计,INSPIRE能够对来自不同来源的数据进行空间感知和适应性整合。通过纳入非负矩阵分解,INSPIRE揭示了具有相应基因程序的可解释空间因子,揭示了组织结构、细胞类型分布和生物过程。我们将INSPIRE应用于来自不同样本的人类皮质切片、具有互补视图的小鼠脑切片、通过不同技术生成的小鼠海马和胚胎切片,以及包含50万个空间点的时空器官发生图谱,展示了INSPIRE的能力。INSPIRE在识别详细生物信号、有效借用不同分析技术的信息以及阐明胚胎发育过程中的动态变化方面表现出卓越性能。此外,我们利用INSPIRE从多个切片构建组织和整个生物体的3D模型,展示了其强大功能和通用性。