Blé Gamaliel, Valenzuela Luis Miguel, Falconi Manuel
División Académica de Ciencias Básicas, UJAT, Cunduacán-Jalpa de Méndez, Cunduacán, 86690, Tabasco, Mexico.
División Académica Multidisciplinaria de Jalpa de Méndez, UJAT, Carretera Nacajuca-Jalpa de Méndez, R/a Rivera Alta, 86205, Jalpa de Méndez, Tabasco, Mexico.
Heliyon. 2024 Sep 24;10(19):e38207. doi: 10.1016/j.heliyon.2024.e38207. eCollection 2024 Oct 15.
The dynamics of a Leslie-Gower type tritrophic model are analyzed. The model considers the interaction among three populations, a resource, a predator and a superpredator. It is assumed that the predator is generalist and its interaction with the resource is according to a general Holling-type functional response. Furthermore, it is assumed that the superpredator is specialist and its interaction with the predator follows a Holling type II functional response. The goal of this work is to show conditions that guarantee the coexistence of the three species. To do this, the existence of a stable equilibrium point or a stable limit cycle is demonstrated, which appears via a bifurcation. In addition, the analytical results are exemplified through numerical simulations.
分析了一个莱斯利-高尔类型的三营养级模型的动力学。该模型考虑了三个种群之间的相互作用,一种资源、一个捕食者和一个超级捕食者。假设捕食者是泛化种,其与资源的相互作用遵循一般的霍林型功能反应。此外,假设超级捕食者是特化种,其与捕食者的相互作用遵循霍林II型功能反应。这项工作的目标是展示保证这三个物种共存的条件。为此,证明了一个稳定平衡点或一个稳定极限环的存在,它通过分岔出现。此外,通过数值模拟对分析结果进行了举例说明。