Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway.
Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway.
Sci Rep. 2024 Oct 10;14(1):23654. doi: 10.1038/s41598-024-73796-9.
We aimed to explore novel biomarker candidates and biomarker signatures of late-onset preeclampsia (LOPE) by profiling samples collected in a longitudinal discovery cohort with a high-throughput proteomics platform. Using the Somalogic 5000-plex platform, we analyzed proteins in plasma samples collected at three visits (gestational weeks (GW) 12-19, 20-26 and 28-34 in 35 women with LOPE (birth ≥ 34 GW) and 70 healthy pregnant women). To identify biomarker signatures, we combined Elastic Net with Stability Selection for stable variable selection and validated their predictive performance in a validation cohort. The biomarker signature with the highest predictive performance (AUC 0.88 (95% CI 0.85-0.97)) was identified in the last trimester of pregnancy (GW 28-34) and included the Fatty acid amid hydrolase 2 (FAAH2), HtrA serine peptidase 1 (HTRA1) and Interleukin-17 receptor C (IL17RC) together with sFLT1 and maternal age, BMI and nulliparity. Our biomarker signature showed increased or similar predictive performance to the sFLT1/PGF-ratio within our data set, and we were able to validate the biomarker signature in a validation cohort (AUC ≥ 0.90). Further validation of these candidates should be performed using another protein quantification platform in an independent cohort where the negative and positive predictive values can be validly calculated.
我们旨在通过对具有高通量蛋白质组学平台的纵向发现队列中收集的样本进行分析,来探索晚期先兆子痫(LOPE)的新型生物标志物候选物和生物标志物特征。使用 Somalogic 5000-plex 平台,我们分析了 35 名 LOPE 患者(分娩≥34 GW)和 70 名健康孕妇在三个访视点(妊娠周(GW)12-19、20-26 和 28-34)收集的血浆样本中的蛋白质。为了识别生物标志物特征,我们将弹性网络与稳定性选择相结合,用于稳定变量选择,并在验证队列中验证其预测性能。在妊娠晚期(GW 28-34)发现了具有最高预测性能(AUC 0.88(95%CI 0.85-0.97))的生物标志物特征,该特征包括脂肪酸酰胺水解酶 2(FAAH2)、HtrA 丝氨酸肽酶 1(HTRA1)和白细胞介素-17 受体 C(IL17RC),以及 sFLT1 和母亲的年龄、BMI 和初产妇。我们的生物标志物特征在我们的数据集中显示出与 sFLT1/PGF 比值相似或更高的预测性能,并且我们能够在验证队列中验证该生物标志物特征(AUC≥0.90)。应使用另一种蛋白质定量平台在独立队列中对这些候选物进行进一步验证,以便可以有效地计算阴性和阳性预测值。