Suppr超能文献

Galformer:一种用于多步股票市场指数预测的具有生成式解码和混合损失函数的变压器模型。

Galformer: a transformer with generative decoding and a hybrid loss function for multi-step stock market index prediction.

作者信息

Ji Yi, Luo Yuxuan, Lu Aixia, Xia Duanyang, Yang Lixia, Wee-Chung Liew Alan

机构信息

School of Electrical Information Engineering, Jiangsu University, 301 Xuefu Road, ZhenjiangJiangsu, 212013, China.

School of Electronic Information Engineering, Anhui University, 111 Jiulong Road, Hefei, 610101, Anhui, China.

出版信息

Sci Rep. 2024 Oct 10;14(1):23762. doi: 10.1038/s41598-024-72045-3.

Abstract

The prediction of stock market fluctuations is crucial for decision-making in various financial fields. Deep learning algorithms have demonstrated outstanding performance in stock market index prediction. Recent research has also highlighted the potential of the Transformer model in enhancing prediction accuracy. However, the Transformer faces challenges in multi-step stock market forecasting, including limitations in inference speed for long sequence prediction and the inadequacy of traditional loss functions to capture the characteristics of noisy, nonlinear stock history data. To address these issues, we introduce an innovative transformer-based model with generative decoding and a hybrid loss function, named "Galformer," tailored for the multi-step prediction of stock market indices. Galformer possesses two distinctive characteristics: (1) a novel generative style decoder that predicts long time-series sequences in a single forward operation, significantly boosting the speed of predicting long sequences; (2) a novel loss function that combines quantitative error and trend accuracy of the predicted results, providing feedback and optimizing the transformer-based model. Experimental results on four typical stock market indices, namely the CSI 300 Index, S&P 500 Index, Dow Jones Industrial Average Index (DJI), and Nasdaq Composite Index (IXIC), affirm that Galformer outperforms other classical methods, effectively optimizing the Transformer model for stock market prediction.

摘要

股票市场波动预测对于各金融领域的决策至关重要。深度学习算法在股票市场指数预测中展现出卓越性能。近期研究还凸显了Transformer模型在提高预测准确性方面的潜力。然而,Transformer在多步股票市场预测中面临挑战,包括长序列预测推理速度的限制以及传统损失函数不足以捕捉有噪声的非线性股票历史数据特征。为解决这些问题,我们引入一种创新的基于Transformer的模型,该模型具有生成式解码和混合损失函数,名为“Galformer”,专为股票市场指数的多步预测量身定制。Galformer具有两个显著特征:(1)一种新颖的生成式风格解码器,可在单次前向操作中预测长时间序列,显著提高长序列预测速度;(2)一种新颖的损失函数,它结合了预测结果的定量误差和趋势准确性,为基于Transformer的模型提供反馈并进行优化。对四个典型股票市场指数,即沪深300指数、标准普尔500指数、道琼斯工业平均指数(DJI)和纳斯达克综合指数(IXIC)的实验结果证实,Galformer优于其他经典方法,有效优化了用于股票市场预测的Transformer模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2e6/11467243/e30b9cf7fdff/41598_2024_72045_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验