Department of Healthcare-associated Infection Management, Tengzhou Central People's Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong Province, China.
Department of Spine Surgery, Tengzhou Central People's Hospital Affiliated to Xuzhou Medical University, Tengzhou, Shandong Province, China.
Sci Rep. 2024 Oct 10;14(1):23726. doi: 10.1038/s41598-024-74585-0.
This study aimed to preliminarily develop machine learning (ML) models capable of predicting the risk of device-associated infection and 30-day outcomes following invasive device procedures in intensive care unit (ICU) patients. The study utilized data from 8574 ICU patients who underwent invasive procedures, sourced from the Medical Information Mart for Intensive Care (MIMIC)-IV version 2.2 database. Patients were allocated into training and validation datasets in a 7:3 ratio. Seven ML models were employed for predicting device-associated infections, while five models were used for predicting 30-day survival outcomes. Model performance was primarily evaluated using the receiver operating characteristic (ROC) curve for infection prediction and the survival model's concordance index (C-index). Top-performing models progressively reduced the number of variables based on their importance, thereby optimizing practical utility. The inclusion of all variables demonstrated that extreme gradient boosting (XGBoost) and extra survival trees (EST) models yielded superior discriminatory performance. Notably, when restricted to the top 10 variables, both models maintained performance levels comparable to when all variables were included. In the validation cohort, the XGBoost model, with the top 10 variables, achieved an area under the curve (AUC) of 0.810 (95% CI 0.808-0.812), an area under the precision-recall curve (AUPRC) of 0.226 (95% CI 0.222-0.230), and a Brier score (BS) of 0.053 (95% CI 0.053-0.054). The EST model, with the top 10 variables, reported a C-index of 0.756 (95% CI 0.754-0.757), a time-dependent AUC of 0.759 (95% CI 0.763-0.775), and an integrated Brier score (IBS) of 0.087 (95% CI 0.087-0.087). Both models are accessible via a web application. The internally evaluated XGBoost and EST models demonstrated exceptional predictive accuracy for device-associated infection risks and 30-day survival outcomes post-invasive procedures in ICU patients. Further validation is required to confirm the clinical utility of these two models in future studies.
本研究旨在初步开发能够预测重症监护病房(ICU)患者接受侵入性设备操作后设备相关感染风险和 30 天结局的机器学习(ML)模型。研究利用了来自 Medical Information Mart for Intensive Care(MIMIC)-IV 版本 2.2 数据库的 8574 名接受侵入性操作的 ICU 患者的数据。患者按 7:3 的比例分配到训练和验证数据集。使用了 7 个 ML 模型来预测设备相关感染,而使用了 5 个模型来预测 30 天生存结局。模型性能主要通过感染预测的接收者操作特征(ROC)曲线和生存模型的一致性指数(C-index)进行评估。表现最佳的模型根据其重要性逐步减少变量数量,从而优化了实际应用的实用性。包含所有变量的结果表明,极端梯度增强(XGBoost)和额外生存树(EST)模型具有卓越的区分性能。值得注意的是,当限制为前 10 个变量时,两个模型的性能水平与包含所有变量时相当。在验证队列中,使用前 10 个变量的 XGBoost 模型,ROC 曲线下面积(AUC)为 0.810(95%CI 0.808-0.812),精准度-召回曲线下面积(AUPRC)为 0.226(95%CI 0.222-0.230),Brier 评分(BS)为 0.053(95%CI 0.053-0.054)。使用前 10 个变量的 EST 模型,C-index 为 0.756(95%CI 0.754-0.757),时间依赖 AUC 为 0.759(95%CI 0.763-0.775),综合 Brier 评分(IBS)为 0.087(95%CI 0.087-0.087)。这两个模型都可以通过一个网络应用程序访问。内部评估的 XGBoost 和 EST 模型对 ICU 患者接受侵入性设备操作后的设备相关感染风险和 30 天生存结局具有卓越的预测准确性。需要进一步验证以确认这两个模型在未来研究中的临床实用性。