Suppr超能文献

用于预测重症监护病房免疫功能低下患者28天全因死亡率的可解释机器学习模型:一项基于MIMIC-IV数据库的回顾性队列研究

Explainable machine learning model for prediction of 28-day all-cause mortality in immunocompromised patients in the intensive care unit: a retrospective cohort study based on MIMIC-IV database.

作者信息

Yu Zhengqiu, Fang Lexin, Ding Yueping

机构信息

School of Medicine, Xiamen University, 422 South Siming Road, Xiamen, 361005, Fujian, China.

National Institute for Data Science in Health and Medicine, Xiamen University, 422 South Siming Road, Xiamen, 361005, Fujian, China.

出版信息

Eur J Med Res. 2025 May 3;30(1):358. doi: 10.1186/s40001-025-02622-3.

Abstract

OBJECTIVES

This study aimed to develop and validate an explainable machine learning (ML) model to predict 28-day all-cause mortality in immunocompromised patients admitted to the intensive care unit (ICU). Accurate and interpretable mortality prediction is crucial for clinical decision-making and optimal allocation of critical care resources for this vulnerable patient population.

METHODS

We utilized retrospective clinical data from the MIMIC-IV (version 2.2) database, encompassing ICU admissions at Beth Israel Deaconess Medical Center from 2008 to 2019. Eligible immunocompromised patients, including those with primary immunodeficiencies and chronic acquired conditions, such as hematological malignancies, solid tumors, and organ transplantation, were selected. Data were randomly split into training (80%) and testing (20%) cohorts. Ten ML models (logistic regression, XGBoost, LightGBM, AdaBoost, Random Forest, Gradient Boosting, Gaussian Naive Bayes, Complement Naive Bayes, Multilayer Perceptron, and Support Vector Machine) were developed and evaluated using area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), sensitivity, specificity, accuracy, and F1 score. Model explainability was achieved through SHapley Additive exPlanations (SHAP), and decision curve analysis (DCA) assessed clinical utility. In addition, Cox proportional hazards regression was conducted to evaluate the impact of predictive factors on time-to-event outcomes.

RESULTS

Among the evaluated models, the Support Vector Machine (SVM) demonstrated the highest AUROC of 0.863 (95% CI 0.834-0.890) and a notable AUPRC of 0.678 (95% CI 0.624-0.736). Key predictive factors consistently identified across multiple ML models included 24-h urine output, blood urea nitrogen (BUN) levels, presence of metastatic solid tumors, Charlson Comorbidity Index (CCI), and international normalized ratio (INR). SHAP analyses provided detailed insights into how these features influenced model predictions.

CONCLUSIONS

The explainable ML models based on various artificial intelligence methods demonstrated promising clinical applicability in predicting 28-day mortality risk among immunocompromised ICU patients. Factors such as urine output, BUN, metastatic solid tumors, CCI, and INR significantly contributed to prediction outcomes and may serve as important predictors in clinical practice.

摘要

目的

本研究旨在开发并验证一种可解释的机器学习(ML)模型,以预测入住重症监护病房(ICU)的免疫功能低下患者的28天全因死亡率。准确且可解释的死亡率预测对于这一脆弱患者群体的临床决策和重症监护资源的优化分配至关重要。

方法

我们利用了MIMIC-IV(版本2.2)数据库中的回顾性临床数据,涵盖了2008年至2019年贝斯以色列女执事医疗中心的ICU入院患者。选择符合条件的免疫功能低下患者,包括原发性免疫缺陷患者以及慢性获得性疾病患者,如血液系统恶性肿瘤、实体瘤和器官移植患者。数据被随机分为训练组(80%)和测试组(20%)。开发并使用受试者工作特征曲线下面积(AUROC)、精确召回率曲线下面积(AUPRC)、敏感性、特异性、准确性和F1分数对10种ML模型(逻辑回归、XGBoost、LightGBM、AdaBoost、随机森林、梯度提升、高斯朴素贝叶斯、互补朴素贝叶斯、多层感知器和支持向量机)进行评估。通过SHapley加性解释(SHAP)实现模型可解释性,并通过决策曲线分析(DCA)评估临床实用性。此外,进行Cox比例风险回归以评估预测因素对事件发生时间结局的影响。

结果

在评估的模型中,支持向量机(SVM)表现出最高的AUROC为0.863(95%CI 0.834 - 0.890)和显著的AUPRC为0.678(95%CI 0.624 - 0.736)。多个ML模型一致确定的关键预测因素包括24小时尿量、血尿素氮(BUN)水平、转移性实体瘤的存在、Charlson合并症指数(CCI)和国际标准化比值(INR)。SHAP分析提供了关于这些特征如何影响模型预测的详细见解。

结论

基于各种人工智能方法的可解释ML模型在预测免疫功能低下的ICU患者28天死亡风险方面显示出有前景的临床适用性。尿量、BUN、转移性实体瘤、CCI和INR等因素对预测结果有显著贡献,可能在临床实践中作为重要的预测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff1/12048957/7d945ddfa058/40001_2025_2622_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验