Faculty of Agriculture, Department of Horticulture, Erciyes University, Kayseri, Turkey.
Graduate School of Natural and Applied Sciences, Agricultural Sciences and Technologies Department, Erciyes University, Kayseri, Turkey.
PeerJ. 2024 Oct 7;12:e18081. doi: 10.7717/peerj.18081. eCollection 2024.
Myrtle ( L.), native to the Mediterranean region of Türkiye, is a valuable plant with applications in traditional medicine, pharmaceuticals, and culinary practices. Understanding how myrtle responds to water stress is essential for sustainable cultivation as climate change exacerbates drought conditions.
This study investigated the performance of selected myrtle genotypes under drought stress by employing tissue culture techniques, rooting trials, and acclimatization processes. Genotypes were tested under varying polyethylene glycol (PEG) concentrations (1%, 2%, 4%, and 6%). Machine learning (ML) algorithms, including Gaussian process (GP), support vector machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost), were utilized to model and predict micropropagation and rooting efficiency.
The research revealed a genotype-dependent response to drought stress. Black-fruited genotypes exhibited higher micropropagation rates compared to white-fruited ones under stress conditions. The application of ML models successfully predicted micropropagation and rooting efficiency, providing insights into genotype performance.
The findings suggest that selecting drought-tolerant genotypes is crucial for enhancing myrtle cultivation. The results underscore the importance of genotype selection and optimization of cultivation practices to address climate change impacts. Future research should explore the molecular mechanisms of stress responses to refine breeding strategies and improve resilience in myrtle and similar economically important crops.
桃金娘(L.)原产于土耳其地中海地区,是一种具有重要价值的植物,在传统医学、制药和烹饪实践中都有应用。了解桃金娘如何应对水分胁迫对于可持续种植至关重要,因为气候变化加剧了干旱条件。
本研究通过组织培养技术、生根试验和驯化过程,研究了选定的桃金娘基因型在干旱胁迫下的表现。将基因型在不同的聚乙二醇(PEG)浓度(1%、2%、4%和 6%)下进行测试。采用机器学习(ML)算法,包括高斯过程(GP)、支持向量机(SVM)、随机森林(RF)和极端梯度提升(XGBoost),对微繁殖和生根效率进行建模和预测。
研究表明,桃金娘对干旱胁迫的反应存在基因型依赖性。在胁迫条件下,黑果基因型的微繁殖率高于白果基因型。ML 模型的应用成功预测了微繁殖和生根效率,为基因型表现提供了深入了解。
研究结果表明,选择耐旱基因型对于提高桃金娘的种植至关重要。研究结果强调了选择基因型和优化种植实践的重要性,以应对气候变化的影响。未来的研究应探索应激反应的分子机制,以完善桃金娘和类似具有重要经济价值的作物的选育策略,提高其适应能力。