Department of Plant Biotechnology, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
PLoS One. 2023 Nov 3;18(11):e0293754. doi: 10.1371/journal.pone.0293754. eCollection 2023.
The important feature of petunia in tissue culture is its unpredictable and genotype-dependent callogenesis, posing challenges for efficient regeneration and biotechnology applications. To address this issue, machine learning (ML) can be considered a powerful tool to analyze callogenesis data, extract key parameters, and predict optimal conditions for petunia callogenesis, facilitating more controlled and productive tissue culture processes. The study aimed to develop a predictive model for callogenesis in petunia using ML algorithms and to optimize the concentrations of phytohormones to enhance callus formation rate (CFR) and callus fresh weight (CFW). The inputs for the model were BAP, KIN, IBA, and NAA, while the outputs were CFR and CFW. Three ML algorithms, namely MLP, RBF, and GRNN, were compared, and the results revealed that GRNN (R2≥83) outperformed MLP and RBF in terms of accuracy. Furthermore, a sensitivity analysis was conducted to determine the relative importance of the four phytohormones. IBA exhibited the highest importance, followed by NAA, BAP, and KIN. Leveraging the superior performance of the GRNN model, a genetic algorithm (GA) was integrated to optimize the concentration of phytohormones for maximizing CFR and CFW. The genetic algorithm identified an optimized combination of phytohormones consisting of 1.31 mg/L BAP, 1.02 mg/L KIN, 1.44 mg/L NAA, and 1.70 mg/L IBA, resulting in 95.83% CFR. To validate the reliability of the predicted results, optimized combinations of phytohormones were tested in a laboratory experiment. The results of the validation experiment indicated no significant difference between the experimental and optimized results obtained through the GA. This study presents a novel approach combining ML, sensitivity analysis, and GA for modeling and predicting callogenesis in petunia. The findings offer valuable insights into the optimization of phytohormone concentrations, facilitating improved callus formation and potential applications in plant tissue culture and genetic engineering.
矮牵牛组织培养的一个重要特点是其不可预测和基因型依赖的体细胞发生,这给高效再生和生物技术应用带来了挑战。为了解决这个问题,可以考虑使用机器学习(ML)作为一种强大的工具来分析体细胞发生数据,提取关键参数,并预测矮牵牛体细胞发生的最佳条件,从而促进更可控和更有成效的组织培养过程。本研究旨在使用 ML 算法为矮牵牛的体细胞发生开发预测模型,并优化植物激素的浓度,以提高愈伤组织形成率(CFR)和愈伤组织鲜重(CFW)。该模型的输入为 BAP、KIN、IBA 和 NAA,输出为 CFR 和 CFW。比较了三种 ML 算法,即 MLP、RBF 和 GRNN,结果表明 GRNN(R2≥83)在准确性方面优于 MLP 和 RBF。此外,还进行了敏感性分析,以确定四种植物激素的相对重要性。IBA 表现出最高的重要性,其次是 NAA、BAP 和 KIN。利用 GRNN 模型的优越性能,集成遗传算法(GA)以优化植物激素浓度,从而最大限度地提高 CFR 和 CFW。遗传算法确定了一个优化的植物激素组合,包括 1.31mg/L 的 BAP、1.02mg/L 的 KIN、1.44mg/L 的 NAA 和 1.70mg/L 的 IBA,实现了 95.83%的 CFR。为了验证预测结果的可靠性,在实验室实验中测试了优化的植物激素组合。验证实验的结果表明,GA 获得的实验和优化结果之间没有显著差异。本研究提出了一种结合 ML、敏感性分析和 GA 的新方法,用于建模和预测矮牵牛的体细胞发生。这些发现为优化植物激素浓度提供了有价值的见解,有助于提高愈伤组织的形成,并在植物组织培养和基因工程中具有潜在的应用。