Suppr超能文献

网络和系统生物学方法有助于研究沙门氏菌病与鸡宿主之间的基因调控相互作用:基于模型的计算机模拟证据与基因表达分析相结合。

Network and systems biology approaches help investigate gene regulatory interactions between Salmonella disease and host in chickens: Model-based in silico evidence combined with gene expression assays.

机构信息

Department of Animal Science, Faculty of Agriculture, University of Torbat-e Jam, Torbat-e Jam, Iran.

Department of Animal Production Management, Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.

出版信息

Vet Med Sci. 2024 Nov;10(6):e70006. doi: 10.1002/vms3.70006.

Abstract

BACKGROUND

Salmonella enteritidis (SE), a previously widespread infectious disease, is still cited as a major factor in economic losses in commercial chicken production. The host's genetic immune system determines the pathogenicity of a particular bacterium. To shed light on this topic, it was necessary to understand the key candidate genes essential for regulating susceptibility and resistance to the target disease. The field of poultry farming in particular has benefited greatly from the connection between quantitative and molecular genetics.

OBJECTIVES

This study aims to identify the most important immune-related genes and their signalling pathways (gene ontology, co-expression and interactions) and to analyse their accumulation in host-resistant SE diseases by combining gene expression assays with model-based in silico evidence.

METHODS

A two-step experimental design is followed. To start, we used free computational tools and online bioinformatics resources, including predicting gene function using a multiple association network integration algorithm (geneMania), the Kyoto Encyclopedia of Genes and Genomes, the Annotation, Visualization and Integrated Discovery (DAVID) database and the stimulator of interferon genes. Natural resistance-associated macrophage protein 1 (NRAMP1), Toll-like receptor 4 (TLR4), interferon-γ (IFNγ), immunoglobulin Y (IgY) and interleukin 8 (IL8) were among the five genes whose expression levels in liver, spleen, and cecum were evaluated at 1107 SE after 48 h of inoculation. This molecular study was developed in the second phase of research to validate the in silico observations. Next, we use five promising biomarkers for relative real-time polymerase chain reaction (PCR) quantification: TLR4, IL8, NRAMP1, IFNγ and IgY genes in two case and control assays. The 2 Livak and Schmittgen method was used to compare the expression of genes in treated and untreated samples. This method normalizes the expression of the target gene to that of actin, an internal control and estimates the change in expression relative to the untreated control. Internal control was provided by the Beta actin gene. Next, statistically, the postdoc test was used for the evaluation of treatments using SAS version 9.4, and p values of 0.05 and 0.01 were chosen for significant level.

RESULTS

Interestingly, the results of our study suggest the involvement of various factors in the host immune response to Salmonella. These include inducible nitric oxide synthase, NRAMP1, immunoglobulin light chain (IgL), transforming growth factor B family (TGFb2, TGFb3 and TGFb4), interleukin 2 (IL2), apoptosis inhibitor protein 1 (IAP1), TLR4, myeloid differentiation protein 2 (MD2), IFNγ, caspase 1 (CASP1), lipopolysaccharide-induced tumour necrosis factor (LITAF), cluster of differentiation 28 (CD28) and prosaposin (PSAP). The summary of gene ontology and related genes found for SE resistance was surprisingly comprehensive and covered the following topics: positive regulation of endopeptidase activity, interleukin-8 production, chemokine production, interferon-gamma production, interleukin-6 production, positive regulation of mononuclear cell proliferation and response to interferon-gamma. The role of these promising biomarkers in our networks against SE susceptibility is essentially confirmed by these results. After 48 h, the spleen showed significant expression of the tissue-specific gene expression patterns for NRAMP1 and IL8 in the cecum, spleen and liver. Based on this information, this report searches for resistance and susceptibility lineages in most genomic regions for SE.

CONCLUSIONS

In conclusion, the development of an appropriate selection program to improve resistance to salmonellosis can be facilitated by a comprehensive understanding of the immune responses of the chicken immune system after SE exposure.

摘要

背景

肠炎沙门氏菌(SE)是一种以前广泛存在的传染病,它仍然是商业鸡肉生产中经济损失的主要因素。宿主的遗传免疫系统决定了特定细菌的致病性。为了阐明这一主题,有必要了解调节对目标疾病的易感性和抗性的关键候选基因。特别是家禽养殖领域极大地受益于数量遗传学和分子遗传学之间的联系。

目的

本研究旨在确定与免疫相关的最重要的基因及其信号通路(基因本体论、共表达和相互作用),并通过结合基因表达测定和基于模型的计算证据,分析它们在宿主抗性 SE 疾病中的积累。

方法

采用两步实验设计。首先,我们使用免费的计算工具和在线生物信息学资源,包括使用多关联网络集成算法(geneMania)预测基因功能、京都基因和基因组百科全书、注释、可视化和综合发现(DAVID)数据库和干扰素基因刺激物。自然抗性相关巨噬细胞蛋白 1(NRAMP1)、Toll 样受体 4(TLR4)、干扰素-γ(IFNγ)、免疫球蛋白 Y(IgY)和白细胞介素 8(IL8)是在 SE 接种后 48 小时评估肝脏、脾脏和盲肠中表达水平的五个基因之一。这项分子研究是在研究的第二阶段开发的,以验证计算观察结果。接下来,我们使用五个有前途的生物标志物进行相对实时聚合酶链反应(PCR)定量:TLR4、IL8、NRAMP1、IFNγ和 IgY 基因在两个病例和对照分析中。使用 Livak 和 Schmittgen 方法 2 来比较处理和未处理样品中的基因表达。该方法将目标基因的表达归一化为肌动蛋白内参,并估计相对于未处理对照的表达变化。β肌动蛋白基因提供内部对照。接下来,使用 SAS 版本 9.4 对处理进行 postdoc 测试评估,选择 0.05 和 0.01 的 p 值作为显著水平。

结果

有趣的是,我们的研究结果表明,宿主对沙门氏菌的免疫反应涉及多种因素。这些因素包括诱导型一氧化氮合酶、NRAMP1、免疫球蛋白轻链(IgL)、转化生长因子 B 家族(TGFb2、TGFb3 和 TGFb4)、白细胞介素 2(IL2)、凋亡抑制蛋白 1(IAP1)、TLR4、髓样分化蛋白 2(MD2)、干扰素-γ(IFNγ)、半胱氨酸蛋白酶 1(CASP1)、脂多糖诱导的肿瘤坏死因子(LITAF)、分化群 28(CD28)和前蛋白(PSAP)。SE 抗性相关基因的基因本体论和相关基因的总结非常全面,涵盖了以下主题:内肽酶活性的正调节、白细胞介素-8 产生、趋化因子产生、干扰素-γ产生、白细胞介素-6 产生、单核细胞增殖的正调节和对干扰素-γ的反应。这些结果基本证实了这些有前途的生物标志物在我们的 SE 易感性网络中的作用。48 小时后,盲肠、脾脏和肝脏中组织特异性基因表达模式中显著表达了 NRAMP1 和 IL8 基因。基于这些信息,本报告在大多数基因组区域中搜索 SE 的抗性和敏感性谱系。

结论

总之,对 SE 暴露后鸡免疫系统免疫反应的全面了解,可以促进制定适当的选择计划,以提高对沙门氏菌病的抗性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aacc/11467963/1693e9f93367/VMS3-10-e70006-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验