Suppr超能文献

基于机器学习的橄榄油品质相关 microRNA 发现

Machine learning-aided microRNA discovery for olive oil quality.

机构信息

Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.

Department of Plant Production and Genetics, Shiraz University, Shiraz, Iran.

出版信息

PLoS One. 2024 Oct 11;19(10):e0311569. doi: 10.1371/journal.pone.0311569. eCollection 2024.

Abstract

MicroRNAs (miRNAs) are key regulators of gene expression in plants, influencing various biological processes such as oil quality and seed development. Although, our knowledge about miRNAs in olive (Olea europaea L.) is progressing, with several miRNAs being identified in previous studies, but most of these reported miRNAs have been predicted without the aid of a reference genome, primarily due to limited genome accessibility at the time. However, significant knowledge gaps still need to be improved in this area. This study addresses the complexities of miRNA detection in olive, using a high quality reference genome and a combination of genomics and machine learning-based methods. By leveraging random forest and support vector machine algorithms, we successfully identified 56 novel miRNAs in olive, surpassing the limitations of conventional homology-based methods. Our subsequent analysis revealed that some of these miRNAs are implicated in the regulation of key genes involved in oil quality. Within the context of oil biosynthesis pathways, the novel miRNA Oeu124369 regulates fatty acid biosynthesis by targeting acetyl-CoA acyltransferase 1 and palmitoyl-protein thioesterase, thereby influencing the production of acetyl-CoA and palmitic acid, respectively. These findings underscore the power of machine learning in unraveling the complex miRNA regulatory network in olive and provide a high quality miRNA resource for future research aimed at improving olive oil production by exploring the target genes of the identified miRNAs to understand their role and their biological processes.

摘要

微 RNA(miRNA)是植物基因表达的关键调控因子,影响各种生物过程,如油质和种子发育。尽管我们对橄榄(Olea europaea L.)中的 miRNA 的了解在不断发展,以前的研究已经鉴定了几个 miRNA,但这些报道的大多数 miRNA 都是在没有参考基因组的情况下预测的,主要是由于当时有限的基因组可及性。然而,在这一领域仍需要改进许多知识空白。本研究使用高质量的参考基因组和基于基因组学和机器学习的方法来解决橄榄中 miRNA 检测的复杂性。通过利用随机森林和支持向量机算法,我们成功地在橄榄中鉴定了 56 个新的 miRNA,克服了传统基于同源性方法的局限性。我们随后的分析表明,其中一些 miRNA 参与了油质关键基因的调控。在油脂生物合成途径中,新的 miRNA Oeu124369 通过靶向乙酰辅酶 A 酰基转移酶 1 和棕榈酰蛋白硫酯酶来调节脂肪酸的生物合成,从而分别影响乙酰辅酶 A 和棕榈酸的产生。这些发现强调了机器学习在揭示橄榄中复杂 miRNA 调控网络方面的强大功能,并为未来通过探索鉴定的 miRNA 的靶基因来提高橄榄油产量的研究提供了高质量的 miRNA 资源,以了解它们的作用及其生物学过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea13/11469528/33dedd09203e/pone.0311569.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验