Suppr超能文献

声学黑洞效应增强型微操纵器

Acoustic black hole effect enhanced micro-manipulator.

作者信息

Yin Qiu, Song Haoyong, Wang Zhaolong, Ma Zhichao, Zhang Wenming

机构信息

State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China.

Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Microsyst Nanoeng. 2024 Oct 12;10(1):144. doi: 10.1038/s41378-024-00789-z.

Abstract

Microparticle manipulation is a critical concern across various fields including microfabrication, flexible electronics and tissue engineering. Acoustic-activated sharp structures have been designed as simple and flexible tools to manipulate microparticles with their good compatibility, fast response, and broad tunability. However, there still lacks rational acoustic-structure design for effective energy concentration at the acoustic-activated sharp structures for microparticle manipulation. Here, we present the acoustic black hole (ABH) effect as enhancement for the acoustic micro-manipulator. It provides great reliability, simplicity and ease of use, supporting custom design of high-throughput patterning modes. Moreover, compared to commonly used configurations, such as cylindrical or conical microneedles, those microneedles with ABH profile exhibit superior acoustic energy focusing at the tip and induce stronger acoustofluidic effects. The average acoustic flow velocity induced by the ABH microneedle is 154 times greater than that of the conical one and 45 times greater than that of the cylindrical microneedle. Besides, the average acoustic radiation force (ARF) produced by the ABH microneedle against acrylic microparticles is about 319 times greater than that of the cylindrical one and 16 times greater than that of the conical one. These results indicate that ABH design significantly enhances microparticle manipulation. We demonstrate this concept with ABH effect enhanced microparticle manipulation and study the parameters influencing its performance including operating frequency, operating voltage and particle diameter. Furthermore, considering the flexibility of this system, we employ it for various patterning and high-throughput microparticle manipulation. This work paves the way for controllable microparticle manipulation, holding great potential for applications in microfabrication and biomedicine.

摘要

微粒操控是包括微纳制造、柔性电子和组织工程等各个领域的关键问题。声激活尖锐结构已被设计为简单且灵活的工具,用于操控微粒,具有良好的兼容性、快速响应和广泛的可调性。然而,在用于微粒操控的声激活尖锐结构处,仍缺乏合理的声学结构设计以实现有效的能量集中。在此,我们提出声黑洞(ABH)效应作为对声学微操纵器的增强。它提供了极高的可靠性、简单性和易用性,支持高通量图案化模式的定制设计。此外,与常用的配置(如圆柱形或圆锥形微针)相比,具有ABH轮廓的微针在尖端表现出卓越的声能聚焦,并能诱导更强的声流体效应。ABH微针诱导的平均声流速度比圆锥形微针大154倍,比圆柱形微针大45倍。此外,ABH微针对丙烯酸微粒产生的平均声辐射力(ARF)比圆柱形微针大约大319倍,比圆锥形微针大16倍。这些结果表明,ABH设计显著增强了微粒操控。我们通过ABH效应增强的微粒操控来展示这一概念,并研究影响其性能的参数,包括工作频率、工作电压和颗粒直径。此外,考虑到该系统的灵活性,我们将其用于各种图案化和高通量微粒操控。这项工作为可控微粒操控铺平了道路,在微纳制造和生物医学应用中具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfc5/11470035/a4cd29fc8643/41378_2024_789_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验