Suppr超能文献

用于可调谐生物催化流动活性的负载超分子水凝胶纳米结构

Supported Supramolecular Hydrogel Nanoarchitectonics for Tunable Biocatalytic Flow Activity.

作者信息

More Shahaji H, Runser Jean-Yves, Ontani Aymeric, Fores Jennifer Rodon, Carvalho Alain, Blanck Christian, Serra Christophe A, Schmutz Marc, Schaaf Pierre, Jierry Loïc

机构信息

Inserm UMR_S 1121, CNRS EMR 7003, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France.

Institut Charles Sadron (UPR22), Université de Strasbourg, CNRS, 23 rue du Loess 67034, Cedex 2, Strasbourg, BP84047, France.

出版信息

Small. 2024 Dec;20(51):e2405326. doi: 10.1002/smll.202405326. Epub 2024 Oct 11.

Abstract

Enzymatically-active polyelectrolyte multilayers containing n layers of phosphatase (AP-PEM) induce the formation of supported biocatalytic supramolecular hydrogels when brought in contact with the precursor tripeptide Fmoc-FFpY (Fmoc = N-fluorenylmethyloxycarbonyl; F = Phenylalanine; Y = Tyrosine; p = phosphate group). AP-PEM triggers the spatially-localized hydrogelation reaching 2, 17 and 350 µm of thickness for n = 1, 2 and 3, respectively. As observed by cryo scanning electron microscopy, a dense nanofibrous network underpinning the hydrogel shows parallelly orientated Fmoc-FFY peptide-based fibrils, perpendicular to the substrate. For the gel generated by the AP-PEM, fluorescence confocal microscopy images show that during the peptide self-assembly, some enzymes are distributed in the hydrogel, preferentially located in few dozens of micrometers above the substrate. In addition, a self-assembly growth rate of 5 µm min is determined when the hydrogelation starts. Through transmission electron microscopy immuno-labelling experiments on self-assemblies generated in solution, we observe that AP are decorating the Fmoc-FFY nanofibers. It is observed both a long-term stability and a higher biocatalytic activity of the so AP-encapsulated hydrogel compared to the bare AP-PEM. This bioactivity can be tuned by the number n in batch and under continuous flow conditions. To illustrate the versatility of this enzyme-supported strategy, multi-catalytic transformations in continuous flow conditions have been successfully carried out using supported supramolecular hydrogel.

摘要

含有n层磷酸酶的酶活性聚电解质多层膜(AP - PEM)与前体三肽Fmoc - FFpY(Fmoc = N - 芴甲氧羰基;F = 苯丙氨酸;Y = 酪氨酸;p = 磷酸基团)接触时,会诱导形成负载型生物催化超分子水凝胶。AP - PEM触发空间定位的水凝胶化,当n = 1、2和3时,水凝胶厚度分别达到2、17和350 µm。通过低温扫描电子显微镜观察,支撑水凝胶的致密纳米纤维网络显示出平行排列的基于Fmoc - FFY肽的原纤维,垂直于底物。对于由AP - PEM产生的凝胶,荧光共聚焦显微镜图像显示,在肽自组装过程中,一些酶分布在水凝胶中,优先位于底物上方几十微米处。此外,水凝胶化开始时确定的自组装生长速率为5 µm/min。通过对溶液中产生的自组装体进行透射电子显微镜免疫标记实验,我们观察到AP修饰了Fmoc - FFY纳米纤维。与裸露的AP - PEM相比,观察到如此封装有AP的水凝胶具有长期稳定性和更高的生物催化活性。这种生物活性可以在分批和连续流动条件下通过n的数量进行调节。为了说明这种酶负载策略的多功能性,使用负载型超分子水凝胶在连续流动条件下成功进行了多催化转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验