Suppr超能文献

基于酶包被纳米粒子的肽自组装的超分子水凝胶中的相分离。

Phase Separation in Supramolecular Hydrogels Based on Peptide Self-Assembly from Enzyme-Coated Nanoparticles.

机构信息

Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 67034 Strasbourg , France.

Institut National de la Santé et de la Recherche Médicale, UMR-S 1121, "Biomatériaux et Bioingénierie" , 67087 Strasbourg , France.

出版信息

Langmuir. 2019 Aug 20;35(33):10838-10845. doi: 10.1021/acs.langmuir.9b01420. Epub 2019 Aug 6.

Abstract

Spatial localization of biocatalysts, such as enzymes, has recently proven to be an effective process to direct supramolecular self-assemblies in a spatiotemporal way. In this work, silica nanoparticles (NPs) functionalized covalently by alkaline phosphatase (NPs@AP) induce the localized growth of self-assembled peptide nanofibers from NPs by dephosphorylation of Fmoc-FFY peptides (Fmoc: fluorenylmethyloxycarbonyl; F: phenylalanine; Y: tyrosine; : phosphate group). The fibrillary nanoarchitecture around NPs@AP underpins a homogeneous hydrogel, which unexpectedly undergoes a macroscopic shape change over time. This macroscopic change is due to a phase separation leading to a dense phase (in NPs and nanofibers) in the center of the vial and surrounded by a dilute one, which still contains NPs and peptide self-assemblies. We thus hypothesize that the phase separation is not a syneresis process. Such a change is only observed when the enzymes are localized on the NPs. The dense phase contracts with time until reaching a constant volume after several days. For a given phosphorylated peptide concentration, the dense phase contracts faster when the NPs@AP concentration is increased. For a given NPs@AP concentration, it condenses faster when the peptide concentration increases. We hypothesize that the appearance of a dense phase is not only due to attractive interactions between NPs@AP but also to the strong interactions of self-assembled peptide nanofibers with the enzymes, covalently fixed on the NPs.

摘要

生物催化剂(如酶)的空间定位最近被证明是一种有效的方法,可以在时空上定向超分子自组装。在这项工作中,通过碱性磷酸酶(NPs@AP)共价功能化的二氧化硅纳米颗粒(NPs)通过去磷酸化 Fmoc-FFY 肽(Fmoc:芴甲氧羰基;F:苯丙氨酸;Y:酪氨酸;:磷酸基团)诱导自组装肽纳米纤维在 NPs 上的局部生长。NPs@AP 周围的纤维状纳米结构支撑着均匀的水凝胶,出乎意料的是,水凝胶会随着时间的推移发生宏观形状变化。这种宏观变化是由于相分离导致在小瓶中心形成致密相(在 NPs 和纳米纤维中),并被稀相包围,稀相中仍然含有 NPs 和肽自组装体。因此,我们假设相分离不是一个收缩过程。只有当酶定位在 NPs 上时,才会观察到这种变化。致密相随着时间的推移而收缩,几天后达到恒定体积。对于给定的磷酸化肽浓度,当 NPs@AP 浓度增加时,致密相收缩得更快。对于给定的 NPs@AP 浓度,当肽浓度增加时,它凝结得更快。我们假设致密相的出现不仅归因于 NPs@AP 之间的吸引力相互作用,还归因于与酶的强相互作用,酶通过共价固定在 NPs 上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验