CNRS, Institut Charles Sadron (UPR22), Université de Strasbourg, 23 rue du Loess, BP 84047,Strasbourg Cedex 2 67034, France.
Faculté de Chimie, Université de Strasbourg, UMR7140, 1 rue Blaise Pascal, Strasbourg Cedex 67008, France.
ACS Nano. 2024 Nov 5;18(44):30448-30462. doi: 10.1021/acsnano.4c08043. Epub 2024 Oct 23.
Short peptide-based supramolecular hydrogels appeared as highly interesting materials for applications in many fields. The optimization of their properties relies mainly on the design of a suitable hydrogelator through an empirical trial-and-error strategy based on the synthesis of various types of peptides. This approach is in part due to the lack of prior structural knowledge of the molecular architecture of the various families of nanofibers. The 3D structure of the nanofibers determines their ability to interact with entities present in their surrounding environment. Thus, it is important to resolve the internal structural organization of the material. Herein, using Fmoc-FFY tripeptide as a model amphiphilic hydrogelator and cryo-EM reconstruction approach, we succeeded to obtain a 3.8 Å resolution 3D structure of a self-assembled nanofiber with a diameter of approximately 4.1 nm and with apparently "infinite" length. The elucidation of the spatial organization of such nano-objects addresses fundamental questions about the way short amphiphilic -Fmoc peptides lacking secondary structure can self-assemble and ensure the cohesion of such a lengthy nanostructure. This nanofiber is organized into a triple-stranded helix with an asymmetric unit composed of two Fmoc-FFY peptides per strand. The three identical amphiphilic strands are maintained together by strong lateral interactions coming from a 3-Fmoc zipper motif. This hydrophobic core of the nanofiber is surrounded by 12 phenyl groups from phenylalanine residues, nonplanar with the six Fmoc groups. Polar tyrosine residues at the C-term position constitute the hydrophilic shell and are exposed all around the external part of the assembly. This fiber has a highly hydrophobic central core with an internal diameter of only 2.4 Å. Molecular dynamics simulations highlight van der Waals and hydrogen bonds between peptides placed on top of each other. We demonstrate that the self-assembly of Fmoc-FFY, whether induced by annealing or by the action of a phosphatase on the phosphorylated precursor Fmoc-FFY, results in two nanostructures with minor differences that we are unable to distinguish.
短肽基超分子水凝胶作为在许多领域具有应用前景的极具吸引力的材料而出现。其性能的优化主要依赖于通过基于合成各种类型肽的经验试错策略来设计合适的水凝胶形成剂。这种方法部分是由于缺乏各种类型纳米纤维分子结构的先验结构知识。纳米纤维的 3D 结构决定了它们与周围环境中存在的实体相互作用的能力。因此,解析材料的内部结构组织非常重要。在此,我们使用 Fmoc-FFY 三肽作为模型两亲性水凝胶形成剂,并通过 cryo-EM 重建方法,成功获得了直径约为 4.1nm 且具有明显“无限”长度的自组装纳米纤维的 3.8Å 分辨率 3D 结构。阐明这种纳米物体的空间组织解决了关于缺乏二级结构的短两亲性-Fmoc 肽如何自组装并确保这种长纳米结构的内聚的基本问题。这种纳米纤维组织成三重螺旋结构,其不对称单元由每链两个 Fmoc-FFY 肽组成。三个相同的两亲性链通过来自 3-Fmoc 拉链基序的强横向相互作用保持在一起。纳米纤维的疏水性核心由来自苯丙氨酸残基的 12 个苯环包围,这些苯环与六个 Fmoc 基团不共面。C 端位置的极性酪氨酸残基构成亲水性壳层,并暴露在组装体的外部。这种纤维具有高度疏水性的中心核,其内径仅为 2.4Å。分子动力学模拟突出了彼此顶部放置的肽之间的范德华力和氢键。我们证明,无论是通过退火还是通过磷酸酶对磷酸化前体 Fmoc-FFY 的作用诱导的 Fmoc-FFY 自组装,都会导致两种结构略有差异的纳米结构,而我们无法区分这两种结构。