Runser Jean-Yves, More Shahaji H, Weiss Robin, Contal Christophe, Bigo-Simon Alexis, Masquelier Maximilien, Ball Vincent, Senger Bernard, Bertagnolli Caroline, Schaaf Pierre, Jierry Loïc
Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1121, Centre National de la Recherche Scientifique (CNRS) EMR 7003, Université de Strasbourg, CRBS, 1 rue Eugène Boeckel, CS 60026, Strasbourg Cedex, 67000, France.
Université de Strasbourg, Faculté de Chirurgie Dentaire, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Fédération des Matériaux et Nanoscience d'Alsace (FMNA), Strasbourg, 67000, France.
Small. 2025 Jun;21(25):e2501673. doi: 10.1002/smll.202501673. Epub 2025 Apr 28.
Liquid-liquid phase separation (LLPS) of biomolecules is increasingly studied in bulk conditions mainly because of its expected implication in the emergence of life. However, in living systems, the LLPS occurs also at interfaces through a precise spatiotemporal localization-induction way. Based on enzymatically active nanoarchitectured polyelectrolyte multilayer (PEM) films, a tunable stimuli-responsive surface controlling coacervation processes specifically at the solid-liquid interface is developed. Urease, embedded in multilayers, is used as a trigger to increase locally the pH near the surface in the presence of urea. The deprotonation of a short peptide synthon FFssFF occurs in close vicinity of the surface and induces the formation of FFssFF coacervate droplets at, and in, the vicinity of the surface. The variation of i) the number of enzyme layers in the PEM film, the concentration of ii) urea, or iii) coacervator impacts the kinetic, the size, and the surface density of the droplets which can result in a quasi-full covering of the surface. Based on optical and fluorescence microscopy images using a fluorescently labelled FFssFFK-Bodipy coacervator, a mechanism of the droplet's formation is established explaining the spatial localization and the control of the coacervation process.
生物分子的液-液相分离(LLPS)在本体条件下越来越受到研究,主要是因为其被认为与生命的起源有关。然而,在生命系统中,LLPS也通过精确的时空定位诱导方式在界面处发生。基于具有酶活性的纳米结构聚电解质多层(PEM)膜,开发了一种可调节的刺激响应表面,专门控制固-液界面处的凝聚过程。嵌入多层膜中的脲酶用作触发剂,在存在尿素的情况下局部提高表面附近的pH值。短肽合成子FFssFF在表面附近发生去质子化,并在表面处及附近诱导形成FFssFF凝聚液滴。i)PEM膜中酶层数、ii)尿素浓度或iii)凝聚剂的变化会影响液滴的动力学、大小和表面密度,这可能导致表面的几乎完全覆盖。基于使用荧光标记的FFssFFK-硼二吡咯凝聚剂的光学和荧光显微镜图像,建立了液滴形成机制,解释了凝聚过程的空间定位和控制。