Kinoshita Kei, Moriya Rai, Kawasaki Seiya, Okazaki Shota, Onodera Momoko, Zhang Yijin, Watanabe Kenji, Taniguchi Takashi, Sasagawa Takao, Machida Tomoki
Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro ,Tokyo153-8505, Japan.
Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, Kanagawa 226-8501, Japan.
ACS Nano. 2024 Oct 22;18(42):28968-28976. doi: 10.1021/acsnano.4c09569. Epub 2024 Oct 13.
Resonant tunneling diodes (RTDs) are a core technology in III-V semiconductor devices. The realization of high-performance RTD using two-dimensional (2D) materials has been long awaited, but it has yet to be accomplished. To this end, we investigate a range of WSe/-BN/WSe RTD devices by varying the number of layers of source and drain WSe. The highest peak-to-valley ratio (PVR) is demonstrated in the three-layer (3L) WSe/-BN/1-layer (1L) WSe structure. The observed PVR values of 63.6 at 2 K and 16.2 at 300 K are the highest among the 2D material-based RTDs reported to date. Our results indicate the two key conditions to achieve high PVR: (1) resonant tunneling should occur between the Γ-point bands of the source and drain electrodes, and (2) the Γ-point bands contributing to the resonant tunneling should be energetically separated from the other bands. Our results provide an important step to outperform III-V semiconductor RTDs with 2D material-based RTDs.
共振隧穿二极管(RTD)是III-V族半导体器件中的一项核心技术。长期以来,人们一直期待着利用二维(2D)材料实现高性能的RTD,但至今尚未实现。为此,我们通过改变源极和漏极WSe的层数,研究了一系列WSe/-BN/WSe RTD器件。在三层(3L)WSe/-BN/单层(1L)WSe结构中展示出了最高的峰谷比(PVR)。在2 K时观测到的PVR值为63.6,在300 K时为16.2,这是迄今为止报道的基于二维材料的RTD中最高的。我们的结果表明了实现高PVR的两个关键条件:(1)源极和漏极电极的Γ点能带之间应发生共振隧穿;(2)对共振隧穿有贡献的Γ点能带应在能量上与其他能带分开。我们的结果为用基于二维材料的RTD超越III-V族半导体RTD迈出了重要一步。