Suppr超能文献

当前代谢物功能注释的方法和突出挑战:全面综述。

Current approaches and outstanding challenges of functional annotation of metabolites: a comprehensive review.

机构信息

Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849, United States.

Department of Internal Medicine, UNLV School of Medicine, University of Nevada, Las Vegas, NV 89154, United States.

出版信息

Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae498.

Abstract

Metabolite profiling is a powerful approach for the clinical diagnosis of complex diseases, ranging from cardiometabolic diseases, cancer, and cognitive disorders to respiratory pathologies and conditions that involve dysregulated metabolism. Because of the importance of systems-level interpretation, many methods have been developed to identify biologically significant pathways using metabolomics data. In this review, we first describe a complete metabolomics workflow (sample preparation, data acquisition, pre-processing, downstream analysis, etc.). We then comprehensively review 24 approaches capable of performing functional analysis, including those that combine metabolomics data with other types of data to investigate the disease-relevant changes at multiple omics layers. We discuss their availability, implementation, capability for pre-processing and quality control, supported omics types, embedded databases, pathway analysis methodologies, and integration techniques. We also provide a rating and evaluation of each software, focusing on their key technique, software accessibility, documentation, and user-friendliness. Following our guideline, life scientists can easily choose a suitable method depending on method rating, available data, input format, and method category. More importantly, we highlight outstanding challenges and potential solutions that need to be addressed by future research. To further assist users in executing the reviewed methods, we provide wrappers of the software packages at https://github.com/tinnlab/metabolite-pathway-review-docker.

摘要

代谢组学分析是一种用于临床诊断复杂疾病的强大方法,这些疾病涵盖了从心血管代谢疾病、癌症和认知障碍到呼吸道疾病和代谢失调相关病症等多个领域。由于系统水平解释的重要性,已经开发出许多方法来使用代谢组学数据识别具有生物学意义的途径。在这篇综述中,我们首先描述了一个完整的代谢组学工作流程(样品制备、数据采集、预处理、下游分析等)。然后,我们全面回顾了 24 种能够进行功能分析的方法,包括将代谢组学数据与其他类型的数据相结合,以在多个组学层面上研究与疾病相关的变化的方法。我们讨论了它们的可用性、实现方式、预处理和质量控制能力、支持的组学类型、嵌入式数据库、途径分析方法学以及集成技术。我们还对每个软件进行了评分和评估,重点关注其关键技术、软件可访问性、文档和用户友好性。根据我们的指南,生命科学家可以根据方法评分、可用数据、输入格式和方法类别轻松选择合适的方法。更重要的是,我们强调了未来研究需要解决的突出挑战和潜在解决方案。为了进一步帮助用户执行所综述的方法,我们在 https://github.com/tinnlab/metabolite-pathway-review-docker 上提供了软件包的封装。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0877/11471905/f432a8428855/bbae498f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验