Patt Andrew, Siddiqui Jalal, Zhang Bofei, Mathé Ewy
The Ohio State University College of Medicine, Columbus, OH, USA.
Methods Mol Biol. 2019;1928:441-468. doi: 10.1007/978-1-4939-9027-6_23.
Metabolomics plays an increasingly large role in translational research, with metabolomics data being generated in large cohorts, alongside other omics data such as gene expression. With this in mind, we provide a review of current approaches that integrate metabolomic and transcriptomic data. Furthermore, we provide a detailed framework for integrating metabolomic and transcriptomic data using a two-step approach: (1) numerical integration of gene and metabolite levels to identify phenotype (e.g., cancer)-specific gene-metabolite relationships using IntLIM and (2) knowledge-based integration, using pathway overrepresentation analysis through RaMP, a comprehensive database of biological pathways. Each step makes use of publicly available R packages ( https://github.com/mathelab/IntLIM and https://github.com/mathelab/RaMP-DB ), and provides a user-friendly web interface for analysis. These interfaces can be run locally through the package or can be accessed through our servers ( https://intlim.bmi.osumc.edu and https://ramp-db.bmi.osumc.edu ). The goal of this chapter is to provide step-by-step instructions on how to install the software and use the commands within the R framework, without the user interface (which is slower than running the commands through command line). Both packages are in continuous development so please refer to the GitHub sites to check for updates.
代谢组学在转化研究中发挥着越来越重要的作用,在大型队列中会生成代谢组学数据,同时还会生成其他组学数据,如基因表达数据。考虑到这一点,我们对整合代谢组学和转录组学数据的当前方法进行了综述。此外,我们提供了一个详细的框架,用于使用两步法整合代谢组学和转录组学数据:(1)对基因和代谢物水平进行数值整合,使用IntLIM识别特定表型(如癌症)的基因 - 代谢物关系;(2)基于知识的整合,通过生物通路综合数据库RaMP进行通路过度表达分析。每一步都利用了公开可用的R包(https://github.com/mathelab/IntLIM和https://github.com/mathelab/RaMP-DB),并提供了一个用户友好的网络界面用于分析。这些界面可以通过包在本地运行,也可以通过我们的服务器(https://intlim.bmi.osumc.edu和https://ramp-db.bmi.osumc.edu)访问。本章的目标是提供关于如何在不使用用户界面(其比通过命令行运行命令慢)的情况下在R框架中安装软件并使用命令的逐步指导。这两个包都在持续开发中,因此请参考GitHub站点检查更新情况。