文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Strategies for improving the genome-editing efficiency of class 2 CRISPR/Cas system.

作者信息

Wang Linli, Han Hongbing

机构信息

Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China.

Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.

出版信息

Heliyon. 2024 Sep 27;10(19):e38588. doi: 10.1016/j.heliyon.2024.e38588. eCollection 2024 Oct 15.


DOI:10.1016/j.heliyon.2024.e38588
PMID:39397905
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11471210/
Abstract

Since its advent, gene-editing technology has been widely used in microorganisms, animals, plants, and other species. This technology shows remarkable application prospects, giving rise to a new biotechnological industry. In particular, third-generation gene editing technology, represented by the CRISPR/Cas9 system, has become the mainstream gene editing technology owing to its advantages of high efficiency, simple operation, and low cost. These systems can be widely used because they have been modified and optimized, leading to notable improvements in the efficiency of gene editing. This review introduces the characteristics of popular CRISPR/Cas systems and optimization methods aimed at improving the editing efficiency of class 2 CRISPR/Cas systems, providing a reference for the development of superior gene editing systems. Additionally, the review discusses the development and optimization of base editors, primer editors, gene activation and repression tools, as well as the advancement and refinement of compact systems such as IscB, TnpB, Fanzor, and Cas12f.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e06/11471210/7f768ae7002a/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e06/11471210/294f8b67be54/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e06/11471210/c20164cfdb87/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e06/11471210/3e6081130a71/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e06/11471210/7f768ae7002a/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e06/11471210/294f8b67be54/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e06/11471210/c20164cfdb87/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e06/11471210/3e6081130a71/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e06/11471210/7f768ae7002a/gr4.jpg

相似文献

[1]
Strategies for improving the genome-editing efficiency of class 2 CRISPR/Cas system.

Heliyon. 2024-9-27

[2]
Strategies and Methods for Improving the Efficiency of CRISPR/Cas9 Gene Editing in Plant Molecular Breeding.

Plants (Basel). 2023-3-28

[3]
Miniature CRISPR-Cas12 Systems: Mechanisms, Engineering, and Genome Editing Applications.

ACS Chem Biol. 2024-7-19

[4]
Genome editing using CRISPR, CAST, and Fanzor systems.

Mol Cells. 2024-7

[5]
[CRISPR/Cas-mediated DNA base editing technology and its application in biomedicine and agriculture].

Sheng Wu Gong Cheng Xue Bao. 2021-9-25

[6]
Applications of CRISPR/Cas gene-editing technology in yeast and fungi.

Arch Microbiol. 2021-12-26

[7]
[Application and optimization of CRISPR/Cas system in bacteria].

Sheng Wu Gong Cheng Xue Bao. 2019-3-25

[8]
CRISPR/Cas genome editing in soybean: challenges and new insights to overcome existing bottlenecks.

J Adv Res. 2024-8-18

[9]
Development of a gRNA Expression and Processing Platform for Efficient CRISPR-Cas9-Based Gene Editing and Gene Silencing in Candida tropicalis.

Microbiol Spectr. 2022-6-29

[10]
[Multiplex gene editing and regulation techniques based on CRISPR/Cas system].

Sheng Wu Gong Cheng Xue Bao. 2023-6-25

引用本文的文献

[1]
TIGR-Tas and the Expanding Universe of RNA-Guided Genome Editing Systems: A New Era Beyond CRISPR-Cas.

Genes (Basel). 2025-7-28

[2]
Beyond Cutting: CRISPR-Driven Synthetic Biology Toolkit for Next-Generation Microalgal Metabolic Engineering.

Int J Mol Sci. 2025-8-2

[3]
Gaining insights into epigenetic memories through artificial intelligence and omics science in plants.

J Integr Plant Biol. 2025-9

[4]
CRISPR-Cas Systems: A Functional Perspective and Innovations.

Int J Mol Sci. 2025-4-12

[5]
State of the art CRISPR-based strategies for cancer diagnostics and treatment.

Biomark Res. 2024-12-18

本文引用的文献

[1]
nCas9 Engineering for Improved Target Interaction Presents an Effective Strategy to Enhance Base Editing.

Adv Sci (Weinh). 2024-8

[2]
Engineering miniature CRISPR-Cas Un1Cas12f1 for efficient base editing.

Mol Ther Nucleic Acids. 2024-4-25

[3]
Discovery and structural mechanism of DNA endonucleases guided by RAGATH-18-derived RNAs.

Cell Res. 2024-5

[4]
Hypercompact TnpB and truncated TnpB systems enable efficient genome editing in vitro and in vivo.

Cell Discov. 2024-3-19

[5]
Enhancing prime editor activity by directed protein evolution in yeast.

Nat Commun. 2024-3-7

[6]
Optimization of Nuclear Localization Signal Composition Improves CRISPR-Cas12a Editing Rates in Human Primary Cells.

GEN Biotechnol. 2022-6

[7]
An engineered Cas12i nuclease that is an efficient genome editing tool in animals and plants.

Innovation (Camb). 2024-1-8

[8]
Exonuclease-enhanced prime editors.

Nat Methods. 2024-3

[9]
Engineering a transposon-associated TnpB-ωRNA system for efficient gene editing and phenotypic correction of a tyrosinaemia mouse model.

Nat Commun. 2024-1-27

[10]
BacPE: a versatile prime-editing platform in bacteria by inhibiting DNA exonucleases.

Nat Commun. 2024-1-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索