Suppr超能文献

基于神经网络图像分割技术的犬类眼科疾病图像诊断

Diagnosis of ophthalmologic diseases in canines based on images using neural networks for image segmentation.

作者信息

Buric Matija, Grozdanic Sinisa, Ivasic-Kos Marina

机构信息

Faculty of Informatics and Digital Technologies, University of Rijeka, Centre for Artificial Intelligence University of Rijeka Ul, Radmile Matejcic 2, 51000, Rijeka, Croatia.

Animal Eye Consultants of Iowa, 698 Boyson Rd A, Hiawatha, IA, 52233, USA.

出版信息

Heliyon. 2024 Sep 21;10(19):e38287. doi: 10.1016/j.heliyon.2024.e38287. eCollection 2024 Oct 15.

Abstract

The primary challenge in diagnosing ocular diseases in canines based on images lies in developing an accurate and reliable machine learning method capable of effectively segmenting and diagnosing these conditions through image analysis. Addressing this challenge, the study focuses on developing and rigorously evaluating a machine learning model for diagnosing ocular diseases in canines, employing the U-Net neural network architecture as a foundational element of this investigation. Through this extensive evaluation, the authors identified a model that exhibited good reliability, achieving prediction scores with an Intersection over Union (IoU) exceeding 80 %, as measured by the Jaccard index. The research methodology encompassed a systematic exploration of various neural network backbones (VGG, ResNet, Inception, EfficientNet) and the U-Net model, combined with an extensive model selection process and an in-depth analysis of a custom training dataset consisting of historical images of different medical symptoms and diseases in dog eyes. The results indicate a fairly high degree of accuracy in the segmentation and diagnosis of ocular diseases in canines, demonstrating the model's effectiveness in real-world applications. In conclusion, this potentially makes a significant contribution to the field by utilizing advanced machine-learning techniques to develop image-based diagnostic routines in veterinary ophthalmology. This model's successful development and validation offer a promising new tool for veterinarians and pet owners, enhancing early disease detection and improving health outcomes for canine patients.

摘要

基于图像诊断犬类眼部疾病的主要挑战在于开发一种准确可靠的机器学习方法,该方法能够通过图像分析有效地分割和诊断这些病症。为应对这一挑战,该研究专注于开发并严格评估一种用于诊断犬类眼部疾病的机器学习模型,采用U-Net神经网络架构作为本研究的基础要素。通过广泛评估,作者确定了一个具有良好可靠性的模型,以Jaccard指数衡量,其交并比(IoU)预测得分超过80%。研究方法包括对各种神经网络主干(VGG、ResNet、Inception、EfficientNet)和U-Net模型进行系统探索,结合广泛的模型选择过程以及对由犬眼不同医学症状和疾病的历史图像组成的自定义训练数据集进行深入分析。结果表明,在犬类眼部疾病的分割和诊断方面具有相当高的准确性,证明了该模型在实际应用中的有效性。总之,通过利用先进的机器学习技术在兽医眼科领域开发基于图像的诊断程序,这可能对该领域做出重大贡献。该模型的成功开发和验证为兽医和宠物主人提供了一种有前景的新工具,增强了疾病早期检测能力并改善了犬类患者的健康状况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbd0/11467576/25eb6c216e73/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验