Zhang Shuqi, Penkova Anita, Jia Xiaodong, Sebag Jerry, Sadhal Satwindar Singh
University of Southern California, Los Angeles, CA, USA.; Convergent Science, Madison, WI, USA.
University of Southern California, Los Angeles, CA, USA.
Eng Appl Artif Intell. 2024 Dec;138(Pt A). doi: 10.1016/j.engappai.2024.109262. Epub 2024 Sep 19.
As the medium for intravitreal drug delivery, the vitreous body can significantly influence drug delivery because of various possible liquefaction geometries. This work innovatively proposes a varying-porosity approach that is capable of solving the pressure and velocity fields in the heterogeneous vitreous with randomly-shaped liquefaction geometry, validated with a finite difference model. Doing so enables patient-specific treatment for intravitreal drug delivery and can significantly improve treatment efficacy. A physics-informed neural network (PINN) model is also established for the simulation, and three cases are used for validation. Despite limited information, the PINN model, together with the varying-porosity approach, captured fluid and drug transport in the partially liquefied vitreous. This opens the possibility for optimizing intravitreal drug delivery based on ultrasonography in clinical practice.
作为玻璃体内药物递送的介质,玻璃体由于各种可能的液化几何形状会显著影响药物递送。这项工作创新性地提出了一种变孔隙率方法,该方法能够求解具有随机形状液化几何形状的非均质玻璃体中的压力场和速度场,并通过有限差分模型进行了验证。这样做能够实现针对玻璃体内药物递送的个性化治疗,并可显著提高治疗效果。还建立了一个基于物理知识的神经网络(PINN)模型用于模拟,并使用三个案例进行验证。尽管信息有限,但PINN模型与变孔隙率方法一起捕捉了部分液化玻璃体中的流体和药物传输情况。这为在临床实践中基于超声检查优化玻璃体内药物递送开辟了可能性。