Suppr超能文献

使用生成对抗神经网络重建三维多孔介质。

Reconstruction of three-dimensional porous media using generative adversarial neural networks.

机构信息

Department of Earth Science and Engineering, Imperial College London, London SW7 2BP, United Kingdom.

出版信息

Phys Rev E. 2017 Oct;96(4-1):043309. doi: 10.1103/PhysRevE.96.043309. Epub 2017 Oct 23.

Abstract

To evaluate the variability of multiphase flow properties of porous media at the pore scale, it is necessary to acquire a number of representative samples of the void-solid structure. While modern x-ray computer tomography has made it possible to extract three-dimensional images of the pore space, assessment of the variability in the inherent material properties is often experimentally not feasible. We present a method to reconstruct the solid-void structure of porous media by applying a generative neural network that allows an implicit description of the probability distribution represented by three-dimensional image data sets. We show, by using an adversarial learning approach for neural networks, that this method of unsupervised learning is able to generate representative samples of porous media that honor their statistics. We successfully compare measures of pore morphology, such as the Euler characteristic, two-point statistics, and directional single-phase permeability of synthetic realizations with the calculated properties of a bead pack, Berea sandstone, and Ketton limestone. Results show that generative adversarial networks can be used to reconstruct high-resolution three-dimensional images of porous media at different scales that are representative of the morphology of the images used to train the neural network. The fully convolutional nature of the trained neural network allows the generation of large samples while maintaining computational efficiency. Compared to classical stochastic methods of image reconstruction, the implicit representation of the learned data distribution can be stored and reused to generate multiple realizations of the pore structure very rapidly.

摘要

为了评估多孔介质多相流特性在孔隙尺度上的变化,需要获取大量的孔隙-固体结构的代表性样本。虽然现代 X 射线计算机断层扫描已经可以提取孔隙空间的三维图像,但对固有材料特性的变化进行评估通常在实验上是不可行的。我们提出了一种通过应用生成式神经网络来重建多孔介质的固-空结构的方法,该方法允许对三维图像数据集表示的概率分布进行隐式描述。我们通过使用对抗性学习方法对神经网络进行演示,证明了这种无监督学习方法能够生成具有代表性的多孔介质样本,这些样本能够体现其统计特性。我们成功地比较了孔隙形态的度量,如欧拉特征、两点统计和单相渗透率的方向,以及合成实现的计算特性与珠装、贝雷砂岩和凯顿石灰岩的计算特性。结果表明,生成对抗网络可以用于重建不同尺度的多孔介质的高分辨率三维图像,这些图像代表了用于训练神经网络的图像的形态。训练后的神经网络的全卷积性质允许在保持计算效率的同时生成大量样本。与经典的图像重建随机方法相比,所学习的数据分布的隐式表示可以被存储和重复使用,以非常快速地生成多个孔隙结构的实现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验