Suppr超能文献

基于SPECT图像与临床特征多模态融合的对比图交叉视角学习的帕金森病分类

PARKINSON'S DISEASE CLASSIFICATION USING CONTRASTIVE GRAPH CROSS-VIEW LEARNING WITH MULTIMODAL FUSION OF SPECT IMAGES AND CLINICAL FEATURES.

作者信息

Ding Jun-En, Hsu Chien-Chin, Liu Feng

机构信息

School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ 07030, USA.

Dept. Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung Chang, Taiwan.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635712. Epub 2024 Aug 22.

Abstract

Parkinson's Disease (PD) affects millions globally, impacting movement. Prior research utilized deep learning for PD prediction, primarily focusing on medical images, neglecting the data's underlying manifold structure. This work proposes a multimodal approach encompassing both image and non-image features, leveraging contrastive cross-view graph fusion for PD classification. We introduce a novel multimodal co-attention module, integrating embeddings from separate graph views derived from low-dimensional representations of images and clinical features. This enables more robust and structured feature extraction for improved multi-view data analysis. Additionally, a simplified contrastive loss-based fusion method is devised to enhance cross-view fusion learning. Our graph-view multimodal approach achieves an accuracy of 91% and an area under the receiver operating characteristic curve (AUC) of 92.8% in five-fold cross-validation. It also demonstrates superior predictive capabilities on non-image data compared to solely machine learning-based methods.

摘要

帕金森病(PD)在全球影响着数百万人,对运动产生影响。先前的研究利用深度学习进行PD预测,主要集中在医学图像上,而忽略了数据潜在的流形结构。这项工作提出了一种多模态方法,涵盖图像和非图像特征,利用对比跨视图图融合进行PD分类。我们引入了一种新颖的多模态协同注意力模块,整合了来自图像和临床特征的低维表示所衍生的单独图视图的嵌入。这使得能够进行更强大且结构化的特征提取,以改进多视图数据分析。此外,还设计了一种基于简化对比损失的融合方法,以增强跨视图融合学习。我们的图视图多模态方法在五折交叉验证中实现了91%的准确率和92.8%的受试者工作特征曲线下面积(AUC)。与仅基于机器学习的方法相比,它在非图像数据上也表现出卓越的预测能力。

相似文献

9
Clustering Enhanced Multiplex Graph Contrastive Representation Learning.聚类增强的多通道图对比表示学习
IEEE Trans Neural Netw Learn Syst. 2025 Jan;36(1):1341-1355. doi: 10.1109/TNNLS.2023.3334751. Epub 2025 Jan 7.

本文引用的文献

2
Simple Contrastive Graph Clustering.简单对比图聚类
IEEE Trans Neural Netw Learn Syst. 2024 Oct;35(10):13789-13800. doi: 10.1109/TNNLS.2023.3271871. Epub 2024 Oct 7.
4
Multimodal biomedical AI.多模态生物医学人工智能。
Nat Med. 2022 Sep;28(9):1773-1784. doi: 10.1038/s41591-022-01981-2. Epub 2022 Sep 15.
10
DaTQUANT: The Future of Diagnosing Parkinson Disease.DaTQUANT:帕金森病诊断的未来
J Nucl Med Technol. 2019 Mar;47(1):21-26. doi: 10.2967/jnmt.118.222349. Epub 2019 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验