Mukherjee Paromita, Paddison Joseph A M, Xu Chao, Ruff Zachary, Wildes Andrew R, Keen David A, Smith Ronald I, Grey Clare P, Dutton Siân E
Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom.
Inorg Chem. 2021 Jan 4;60(1):263-271. doi: 10.1021/acs.inorgchem.0c02899. Epub 2020 Dec 15.
We present a structural and magnetic study of two batches of polycrystalline LiNiMnCoO (commonly known as Li NMC 811), a Ni-rich Li ion battery cathode material, using elemental analysis, X-ray and neutron diffraction, magnetometry, and polarized neutron scattering measurements. We find that the samples, labeled S1 and S2, have the composition LiNiMnCoO, with = 0.025(2), = 0.120(2) for S1 and = 0.002(2), = 0.094(2) for S2, corresponding to different concentrations of magnetic ions and excess Ni in the Li layers. Both samples show a peak in the zero-field-cooled (ZFC) dc susceptibility at 8.0(2) K, but the temperature at which the ZFC and FC (field-cooled) curves deviate is substantially different: 64(2) K for S1 and 122(2) K for S2. The ac susceptibility measurements show that the transition for S1 shifts with frequency whereas no such shift is observed for S2 within the resolution of our measurements. Our results demonstrate the sample dependence of magnetic properties in Li NMC 811, consistent with previous reports on the parent material LiNiO. We further establish that a combination of experimental techniques is necessary to accurately determine the chemical composition of next-generation battery materials with multiple cations.
我们使用元素分析、X射线和中子衍射、磁测量以及极化中子散射测量等方法,对两批多晶LiNiMnCoO(通常称为Li NMC 811,一种富镍锂离子电池正极材料)进行了结构和磁性研究。我们发现,标记为S1和S2的样品的组成为LiNiMnCoO,其中S1的 = 0.025(2), = 0.120(2),S2的 = 0.002(2), = 0.094(2),这对应于锂层中磁性离子和过量镍的不同浓度。两个样品在零场冷却(ZFC)直流磁化率中均在8.0(2) K处出现一个峰值,但ZFC和场冷却(FC)曲线出现偏差的温度有很大差异:S1为64(2) K,S2为122(2) K。交流磁化率测量表明,S1的转变随频率变化,而在我们测量的分辨率范围内,S2未观察到这种变化。我们的结果证明了Li NMC 811中磁性性质对样品的依赖性,这与之前关于母体材料LiNiO的报道一致。我们进一步确定,对于准确测定具有多种阳离子的下一代电池材料的化学成分,需要结合多种实验技术。