使用Illumina和ONT技术对冷冻粪便样本进行测序得到的人类肠道微生物群宏基因组图谱数据集。

Dataset of metagenomic profiles of human gut microbiome from frozen fecal samples sequenced using Illumina and ONT chemistries.

作者信息

Kumar Gauraw, Bhadury Punyasloke

机构信息

Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246 West Bengal, India.

出版信息

Data Brief. 2024 Sep 19;57:110961. doi: 10.1016/j.dib.2024.110961. eCollection 2024 Dec.

Abstract

The data presented in this study are metagenomic profiles of human gut microbiome deduced from frozen fecal samples using two different sequencing chemistries namely, Illumina and Oxford Nanopore Technologies (ONT). The generated data is obtained from genomic DNA extracted from frozen fecal samples collected from a healthy individual on Day 3, Day 5, Day 9, Day 12, and Day 30, in addition to Day 1 (unfrozen). The metagenomic sequence data have been deposited at NCBI SRA as BioProject PRJNA827663. The taxonomic annotation undertaken using MG-RAST showed relative abundance of bacteria represented by different taxonomic levels varied significantly based on two sequencing chemistries. There was distinct temporal variation in the relative abundance of bacteria at different taxonomic levels based on the day of extraction of genomic DNA. This dataset can be used to study differences in functional profiles of human gut microbiome using different sequencing technologies. Moreover, generated data can aid in selection of most appropriate sequencing chemistry to study future human gut microbiome studies based on the appropriate preservation method of fecal samples.

摘要

本研究中呈现的数据是利用两种不同的测序方法,即Illumina和牛津纳米孔技术(ONT),从冷冻粪便样本中推导出来的人类肠道微生物群的宏基因组图谱。生成的数据来自从一名健康个体在第1天(未冷冻)、第3天、第5天、第9天、第12天和第30天收集的冷冻粪便样本中提取的基因组DNA。宏基因组序列数据已作为生物项目PRJNA827663存放在NCBI SRA中。使用MG-RAST进行的分类注释显示,基于两种测序方法,不同分类水平所代表的细菌相对丰度存在显著差异。基于基因组DNA提取日期,不同分类水平的细菌相对丰度存在明显的时间变化。该数据集可用于研究使用不同测序技术时人类肠道微生物群功能图谱的差异。此外,生成的数据有助于根据粪便样本的适当保存方法,选择最合适的测序方法用于未来的人类肠道微生物群研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404e/11467544/b2fd43b6fab9/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索