From Digital Technology and Innovation, Siemens Healthineers, 755 College Rd E, Princeton, NJ 08540 (H. Li, H. Liu, D.C., A.K., B.L.); Diagnostic Imaging, Siemens Healthineers, Erlangen, Bavaria, Germany (H.v.B., R.G.); Vanderbilt University, Nashville, Tenn (H. Li, H. Liu, I.O.); Radboud University Medical Center, Nijmegen, the Netherlands (H.H.); New York University, New York, NY (A.T.); Universitätsspital Basel, Basel, Switzerland (D.W.); Charité, Universitätsmedizin Berlin, Berlin, Germany (T.P.); Patero Clinic, Moscow, Russia (I.S.); Eunpyeong St. Mary's Hospital, Catholic University of Korea, Seoul, Republic of Korea (M.H.C.); Department of Radiology, Changhai Hospital of Shanghai, Shanghai, China (Q.Y.); Diagnostikum Graz Süd-West, Graz, Austria (D.S.); Department of Radiology, Loyola University Medical Center, Maywood, Ill (S.S.); Department of Diagnostic Radiology, Oregon Health and Science University School of Medicine, Portland, Ore (F.C.); and Massachusetts General Hospital, Boston, Mass (M.H.).
Radiol Artif Intell. 2024 Sep;6(5):e230521. doi: 10.1148/ryai.230521.
Purpose To determine whether the unsupervised domain adaptation (UDA) method with generated images improves the performance of a supervised learning (SL) model for prostate cancer (PCa) detection using multisite biparametric (bp) MRI datasets. Materials and Methods This retrospective study included data from 5150 patients (14 191 samples) collected across nine different imaging centers. A novel UDA method using a unified generative model was developed for PCa detection using multisite bpMRI datasets. This method translates diffusion-weighted imaging (DWI) acquisitions, including apparent diffusion coefficient (ADC) and individual diffusion-weighted (DW) images acquired using various values, to align with the style of images acquired using values recommended by Prostate Imaging Reporting and Data System (PI-RADS) guidelines. The generated ADC and DW images replace the original images for PCa detection. An independent set of 1692 test cases (2393 samples) was used for evaluation. The area under the receiver operating characteristic curve (AUC) was used as the primary metric, and statistical analysis was performed via bootstrapping. Results For all test cases, the AUC values for baseline SL and UDA methods were 0.73 and 0.79 ( < .001), respectively, for PCa lesions with PI-RADS score of 3 or greater and 0.77 and 0.80 ( < .001) for lesions with PI-RADS scores of 4 or greater. In the 361 test cases under the most unfavorable image acquisition setting, the AUC values for baseline SL and UDA were 0.49 and 0.76 ( < .001) for lesions with PI-RADS scores of 3 or greater and 0.50 and 0.77 ( < .001) for lesions with PI-RADS scores of 4 or greater. Conclusion UDA with generated images improved the performance of SL methods in PCa lesion detection across multisite datasets with various values, especially for images acquired with significant deviations from the PI-RADS-recommended DWI protocol (eg, with an extremely high value). Prostate Cancer Detection, Multisite, Unsupervised Domain Adaptation, Diffusion-weighted Imaging, Value © RSNA, 2024.
确定使用多站点双参数 (bp) MRI 数据集进行前列腺癌 (PCa) 检测的无监督域自适应 (UDA) 方法是否可以通过生成图像来提高监督学习 (SL) 模型的性能。
本回顾性研究纳入了 9 个不同成像中心的 5150 例患者(14191 例样本)的数据。我们开发了一种新的 UDA 方法,该方法使用统一的生成模型来检测使用多站点 bpMRI 数据集的 PCa。该方法通过将包括使用各种 值采集的表观扩散系数 (ADC) 和个体扩散加权 (DW) 图像在内的扩散加权成像 (DWI) 采集转换为与前列腺影像报告和数据系统 (PI-RADS) 指南推荐的 值采集的图像风格一致,从而对其进行对齐。生成的 ADC 和 DW 图像用于 PCa 检测,替代原始图像。使用一组独立的 1692 例测试病例(2393 例样本)进行评估。使用受试者工作特征曲线下面积 (AUC) 作为主要指标,并通过自举进行统计分析。
在所有测试病例中,基线 SL 和 UDA 方法对于 PI-RADS 评分≥3 的 PCa 病变的 AUC 值分别为 0.73 和 0.79(<.001),对于 PI-RADS 评分≥4 的病变的 AUC 值分别为 0.77 和 0.80(<.001)。在最不利的图像采集设置下的 361 例测试病例中,对于 PI-RADS 评分≥3 的病变,基线 SL 和 UDA 的 AUC 值分别为 0.49 和 0.76(<.001),对于 PI-RADS 评分≥4 的病变,这两个值分别为 0.50 和 0.77(<.001)。
在具有各种 值的多站点数据集上,使用生成图像的 UDA 提高了 SL 方法在 PCa 病变检测中的性能,特别是对于与 PI-RADS 推荐的 DWI 方案有显著偏差(例如,使用极高 值)的图像。
前列腺癌检测;多站点;无监督域自适应;扩散加权成像; 值
©2024 RSNA