Suppr超能文献

可视化在估计心血管疾病风险中的作用:范围综述。

The Role of Visualization in Estimating Cardiovascular Disease Risk: Scoping Review.

机构信息

Faculty of Health Sciences, University of Maribor, Maribor, Slovenia.

Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium.

出版信息

JMIR Public Health Surveill. 2024 Oct 14;10:e60128. doi: 10.2196/60128.

Abstract

BACKGROUND

Supporting and understanding the health of patients with chronic diseases and cardiovascular disease (CVD) risk is often a major challenge. Health data are often used in providing feedback to patients, and visualization plays an important role in facilitating the interpretation and understanding of data and, thus, influencing patients' behavior. Visual analytics enable efficient analysis and understanding of large datasets in real time. Digital health technologies can promote healthy lifestyle choices and assist in estimating CVD risk.

OBJECTIVE

This review aims to present the most-used visualization techniques to estimate CVD risk.

METHODS

In this scoping review, we followed the Joanna Briggs Institute PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. The search strategy involved searching databases, including PubMed, CINAHL Ultimate, MEDLINE, and Web of Science, and gray literature from Google Scholar. This review included English-language articles on digital health, mobile health, mobile apps, images, charts, and decision support systems for estimating CVD risk, as well as empirical studies, excluding irrelevant studies and commentaries, editorials, and systematic reviews.

RESULTS

We found 774 articles and screened them against the inclusion and exclusion criteria. The final scoping review included 17 studies that used different methodologies, including descriptive, quantitative, and population-based studies. Some prognostic models, such as the Framingham Risk Profile, World Health Organization and International Society of Hypertension risk prediction charts, Cardiovascular Risk Score, and a simplified Persian atherosclerotic CVD risk stratification, were simpler and did not require laboratory tests, whereas others, including the Joint British Societies recommendations on the prevention of CVD, Systematic Coronary Risk Evaluation, and Framingham-Registre Gironí del COR, were more complex and required laboratory testing-related results. The most frequently used prognostic risk factors were age, sex, and blood pressure (16/17, 94% of the studies); smoking status (14/17, 82%); diabetes status (11/17, 65%); family history (10/17, 59%); high-density lipoprotein and total cholesterol (9/17, 53%); and triglycerides and low-density lipoprotein cholesterol (6/17, 35%). The most frequently used visualization techniques in the studies were visual cues (10/17, 59%), followed by bar charts (5/17, 29%) and graphs (4/17, 24%).

CONCLUSIONS

On the basis of the scoping review, we found that visualization is very rarely included in the prognostic models themselves even though technology-based interventions improve health care worker performance, knowledge, motivation, and compliance by integrating machine learning and visual analytics into applications to identify and respond to estimation of CVD risk. Visualization aids in understanding risk factors and disease outcomes, improving bioinformatics and biomedicine. However, evidence on mobile health's effectiveness in improving CVD outcomes is limited.

摘要

背景

支持和了解慢性病和心血管疾病 (CVD) 风险患者的健康状况通常是一项重大挑战。健康数据通常用于向患者提供反馈,而可视化在促进数据的解释和理解方面发挥着重要作用,从而影响患者的行为。可视化分析可实时高效地分析和理解大型数据集。数字健康技术可以促进健康的生活方式选择,并协助估计 CVD 风险。

目的

本综述旨在介绍用于估计 CVD 风险的最常用可视化技术。

方法

在本次范围综述中,我们遵循了 Joanna Briggs 研究所 PRISMA-ScR(系统评价和荟萃分析扩展的首选报告项目,用于范围综述)指南。搜索策略涉及搜索数据库,包括 PubMed、CINAHL 终极版、MEDLINE 和 Web of Science,以及来自 Google Scholar 的灰色文献。本综述包括关于数字健康、移动健康、移动应用程序、图像、图表和 CVD 风险估计决策支持系统的英文文章,以及经验研究,排除不相关的研究和评论、社论和系统评价。

结果

我们发现了 774 篇文章,并根据纳入和排除标准对其进行了筛选。最终的范围综述包括 17 项研究,这些研究采用了不同的方法,包括描述性、定量和基于人群的研究。一些预测模型,如 Framingham 风险概况、世界卫生组织和国际高血压协会风险预测图表、心血管风险评分和简化的波斯动脉粥样硬化 CVD 风险分层,较为简单,不需要实验室检测,而另一些模型,如英国联合协会关于 CVD 预防的建议、系统冠状动脉风险评估和 Framingham-Registre Gironí del COR,则较为复杂,需要与实验室检测相关的结果。最常使用的预测风险因素是年龄、性别和血压(17 项研究中的 16 项,占 94%);吸烟状况(14 项研究中的 14 项,占 82%);糖尿病状况(11 项研究中的 11 项,占 65%);家族史(10 项研究中的 10 项,占 59%);高密度脂蛋白和总胆固醇(9 项研究中的 9 项,占 53%);和甘油三酯和低密度脂蛋白胆固醇(6 项研究中的 6 项,占 35%)。研究中最常使用的可视化技术是视觉提示(17 项研究中的 10 项,占 59%),其次是条形图(17 项研究中的 5 项,占 29%)和图表(17 项研究中的 4 项,占 24%)。

结论

基于范围综述,我们发现即使基于技术的干预措施通过将机器学习和可视化分析集成到应用程序中以识别和响应 CVD 风险估计,从而提高医疗保健工作者的绩效、知识、动机和依从性,可视化在预测模型本身中也很少被包括在内。可视化有助于理解风险因素和疾病结果,改善生物信息学和生物医学。然而,关于移动健康在改善 CVD 结局方面的有效性的证据有限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b280/11519570/69ed620ce96f/publichealth_v10i1e60128_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验