Zhang Pengyu, Ju Hao, He Weihua, Wang Yaoyuan, Zhang Ziyang, Li Shengming, Wang Dong, Lu Huchuan, Jia Xu
IEEE Trans Neural Netw Learn Syst. 2025 Jul;36(7):11977-11988. doi: 10.1109/TNNLS.2024.3459969.
Recovering a sequence of latent sharp frames from a motion-blurred image is a challenging task. The bio-inspired event camera, which produces an event stream with high temporal resolution, has been exploited to promote the recovery performance. However, recovering sharp sequences with arbitrary temporal scales has been ignored for a long time. Existing works can only recover a fixed number of latent frames from a blurry image once they are trained. In this work, we propose an event-assisted blurry image unfolding framework that can work across arbitrary temporal scales. A bi-directional recurrent network is employed to encode events corresponding to each latent frame, which gathers information over all events in the exposure time. Features of both the blurry image and events are fused together and fed to a bi-directional latent sequence decoder (BiLSD) to produce a sequence of latent sharp frames. Extensive experiments show that the proposed method not only performs favorably against state-of-the-art methods in recovering a fixed number of frames from a blurry image but can be well generalized to arbitrary-temporal-scale blurry image unfolding.
从运动模糊图像中恢复一系列潜在的清晰帧是一项具有挑战性的任务。受生物启发的事件相机能够产生具有高时间分辨率的事件流,已被用于提升恢复性能。然而,长期以来,恢复任意时间尺度的清晰序列一直被忽视。现有工作一旦经过训练,只能从模糊图像中恢复固定数量的潜在帧。在这项工作中,我们提出了一个事件辅助的模糊图像展开框架,该框架可以在任意时间尺度上工作。我们使用双向循环网络对与每个潜在帧对应的事件进行编码,该网络在曝光时间内收集所有事件的信息。模糊图像和事件的特征融合在一起,并输入到双向潜在序列解码器(BiLSD)中,以生成一系列潜在的清晰帧。大量实验表明,所提出的方法不仅在从模糊图像中恢复固定数量的帧方面优于现有方法,而且可以很好地推广到任意时间尺度的模糊图像展开。