Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador.
One Health Research Group, Universidad de las Américas, Quito, Pichincha, Ecuador.
PLoS One. 2024 Oct 14;19(10):e0311927. doi: 10.1371/journal.pone.0311927. eCollection 2024.
Magnet-mediated gene therapy has gained considerable interest from researchers as a novel alternative for treating genetic disorders, particularly through the use of superparamagnetic iron oxide nanoparticles (NPs)-such as magnetite NPs (Fe3O4NPs)-as non-viral genetic vectors. Despite their commercial availability for specific genetic transfection, such as in microglia cell lines, many potential uses remain unexplored. Still, ethical concerns surrounding the use of human DNA often impede genetic research. Hence, this study examined DNA-coated Fe3O4NPs (DNA-Fe₃O₄NPs) as potential transfection vectors for human foreskin fibroblasts (HFFs) and A549 (lung cancer) cell lines, using banana (Musa sp.) as a low-cost, and bioethically unproblematic DNA source. Following coprecipitation synthesis, DNA-Fe₃O₄NP characterization revealed a ζ-potential of 40.65 ± 4.10 mV, indicating good colloidal stability in aqueous media, as well as a superparamagnetic regime, evidenced by the absence of hysteresis in their magnetization curves. Successful DNA coating on the NPs was confirmed through infrared spectra and surface analysis results, while magnetite content was verified via characteristic X-ray diffraction peaks. Transmission electron microscopy (TEM) determined the average size of the DNA-Fe3O4NPs to be 14.69 ± 5.22 nm. TEM micrographs also showed no morphological changes in the DNA-Fe3O4NPs over a 30-day period. Confocal microscopy of HFF and A549 lung cancer cell lines incubated with fluoresceinamine-labeled DNA-Fe3O4NPs demonstrated their internalization into both the cytoplasm and nucleus. Neither uncoated Fe3O4NPs nor DNA-Fe3O4NPs showed cytotoxicity to A549 lung cancer cells at 1-50 μg/mL and 25-100 μg/mL, respectively, after 24 h. HFFs also maintained viability at 1-10 μg/mL for both NP types. In conclusion, DNA-Fe3O4NPs were successfully internalized into cells and exhibited no cytotoxicity in both healthy and cancerous cells across a range of concentrations. These NPs, capable of binding to various types of DNA and RNA, hold promise for applications in gene therapy.
磁介导基因治疗作为一种治疗遗传疾病的新方法,已引起研究人员的极大兴趣,特别是通过使用超顺磁性氧化铁纳米粒子(如磁铁矿 NPs(Fe3O4NPs))作为非病毒基因载体。尽管它们在特定基因转染方面具有商业可用性,例如在小神经胶质细胞系中,但许多潜在用途仍未得到探索。然而,围绕人类 DNA 使用的伦理问题常常阻碍了基因研究。因此,本研究以香蕉(Musa sp.)为低成本、无生物伦理问题的 DNA 来源,考察了 DNA 包覆的 Fe3O4NPs(DNA-Fe₃O₄NPs)作为人包皮成纤维细胞(HFF)和 A549(肺癌)细胞系的潜在转染载体。通过共沉淀合成,对 DNA-Fe₃O₄NP 进行了表征,结果表明其 ζ 电位为 40.65±4.10 mV,表明在水性介质中具有良好的胶体稳定性,同时其磁化曲线中不存在滞后现象,表明其具有超顺磁性。通过红外光谱和表面分析结果证实了 NPs 上 DNA 的成功包覆,而通过特征 X 射线衍射峰验证了磁铁矿的含量。透射电子显微镜(TEM)确定 DNA-Fe3O4NPs 的平均尺寸为 14.69±5.22nm。TEM 显微照片还表明,在 30 天的时间内,DNA-Fe3O4NPs 的形态没有发生变化。用荧光胺标记的 DNA-Fe3O4NPs 孵育 HFF 和 A549 肺癌细胞系的共焦显微镜显示,它们被内化到细胞质和细胞核中。未包覆的 Fe3O4NPs 和 DNA-Fe3O4NPs 在 24 小时内分别在 1-50μg/mL 和 25-100μg/mL 时对 A549 肺癌细胞均无细胞毒性。对于两种 NP 类型,HFF 在 1-10μg/mL 时也保持活力。总之,DNA-Fe3O4NPs 成功地被内化到细胞中,在不同浓度下对健康细胞和癌细胞均无细胞毒性。这些 NPs 能够与多种类型的 DNA 和 RNA 结合,有望在基因治疗中得到应用。