You Sang-Mook, Kang Dong-Gook, Choi June-Ho, Kim Younghoon, Jang Hyeon Soo, Jung Chan-Duck, Seong Hyolin, Kim Young-Rok, Cha Hyun Gil, Kim Hoyong
Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea.
Institute of Life Sciences and Resources & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
Int J Biol Macromol. 2024 Nov;281(Pt 4):136552. doi: 10.1016/j.ijbiomac.2024.136552. Epub 2024 Oct 12.
Lignin-based supports for metal nanoparticles (NPs) have attracted significant attention due to their abundant functional groups that facilitate NPs loading. However, many studies involve a two-step process: fabricating lignin particles and then reducing metal ions to NPs using physical energy consumption or chemical reduction. A one-step in-situ reduction method for NP synthesis on carrier surfaces, eliminating energy consumption, is needed for environmentally friendly and sustainable approach. Herein, we demonstrate that poly-l-lysine (PL) controls the self-assembly kinetics of kraft lignin (KL), and reduces silver ion (Ag) to silver nanoparticles (AgNPs), forming highly monodisperse, co-self-assembled PL-KL particles (Ag@PL-KLPs) without chemical reducing agents or energy consumption. PL facilitated rapid KL desolvation, promoting intermolecular interactions and silver ion adsorption, followed by an efficient, separate nucleation and growth process yielded Ag@PL-KLPs approximately 270 nm in size with a narrow distribution. Notably, Ag@PL-KLPs exhibited enhanced bacteriostatic and bactericidal properties against antibiotic-resistant bacteria (ARB), including both Gram-negative and Gram-positive strains, at concentrations of 250 μg/mL. Leveraging biomass-derived lignin and this cost-effective, one-step green synthesis approach offers a sustainable method for avoiding antibiotic overuse and environmental contamination.
基于木质素的金属纳米颗粒(NPs)载体因其丰富的官能团有利于纳米颗粒负载而备受关注。然而,许多研究涉及两步过程:制备木质素颗粒,然后使用物理能耗或化学还原将金属离子还原为纳米颗粒。为了实现环境友好和可持续的方法,需要一种在载体表面原位还原纳米颗粒的一步法,以消除能量消耗。在此,我们证明聚-L-赖氨酸(PL)控制了硫酸盐木质素(KL)的自组装动力学,并将银离子(Ag)还原为银纳米颗粒(AgNPs),形成高度单分散的共自组装PL-KL颗粒(Ag@PL-KLPs),无需化学还原剂或能量消耗。PL促进了KL的快速去溶剂化,促进了分子间相互作用和银离子吸附,随后通过高效、独立的成核和生长过程产生了尺寸约为270nm、分布狭窄的Ag@PL-KLPs。值得注意的是,在250μg/mL的浓度下,Ag@PL-KLPs对包括革兰氏阴性和革兰氏阳性菌株在内的抗生素耐药细菌(ARB)表现出增强的抑菌和杀菌性能。利用生物质衍生的木质素和这种具有成本效益的一步绿色合成方法,为避免抗生素过度使用和环境污染提供了一种可持续的方法。