Zhang Shuai, Feng Xue, Li Chong-Hui, Zheng Yuan-Ming, Wang Meng-Ya, Li Jun-Jie, Dai Yun-Peng, Jing Naihe, Zhou Jia-Wei, Wang Gang
State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China.
Laboratory Animal Resource Center, Fudan University, Shanghai, China.
Cell Discov. 2024 Oct 15;10(1):102. doi: 10.1038/s41421-024-00730-8.
Gaining the molecular understanding for myelination development and regeneration has been a long-standing goal in neurological research. Mutations in the transcription cofactor Mediator Med23 subunit are often associated with intellectual disability and white matter defects, although the precise functions and mechanisms of Mediator in myelination remain unclear. In this study, we generated a mouse model carrying an Med23 mutation that has been identified in a patient with hypomyelination features. The MED23 mouse model develops white matter thinning and cognitive decline, mimicking common clinical phenotypes. Further, oligodendrocyte-lineage specific Med23 knockout mice verified the important function of MED23 in regulating central nervous system myelination and postinjury remyelination. Utilizing the in vitro cellular differentiation assay, we found that the oligodendrocyte progenitor cells, either carrying the Q649R mutation or lacking Med23, exhibit significant deficits in their capacity to differentiate into mature oligodendrocytes. Gene profiling combined with reporter assays demonstrated that Mediator Med23 controls Sp1-directed gene programs related to oligodendrocyte differentiation and cholesterol metabolism. Integrative analysis demonstrated that Med23 modulates the P300 binding to Sp1-targeted genes, thus orchestrating the H3K27 acetylation and enhancer activation for the oligodendrocyte lineage progression. Collectively, our findings identified the critical role for the Mediator Med23 in oligodendrocyte fate determination and provide mechanistic insights into the myelination pathogenesis associated with MED23 mutations.
在神经学研究中,深入了解髓鞘形成的发育和再生的分子机制一直是一个长期目标。转录辅因子中介体Med23亚基的突变通常与智力残疾和白质缺陷有关,尽管中介体在髓鞘形成中的精确功能和机制仍不清楚。在本研究中,我们构建了一个携带Med23突变的小鼠模型,该突变已在一名具有髓鞘形成不足特征的患者中被鉴定出来。MED23小鼠模型出现白质变薄和认知能力下降,模拟了常见的临床表型。此外,少突胶质细胞谱系特异性Med23基因敲除小鼠证实了MED23在调节中枢神经系统髓鞘形成和损伤后髓鞘再生中的重要作用。利用体外细胞分化试验,我们发现携带Q649R突变或缺乏Med23的少突胶质细胞祖细胞在分化为成熟少突胶质细胞的能力上存在显著缺陷。基因谱分析结合报告基因试验表明,中介体Med23控制与少突胶质细胞分化和胆固醇代谢相关的Sp1指导的基因程序。综合分析表明,Med23调节P300与Sp1靶向基因的结合,从而协调少突胶质细胞谱系进展的H3K27乙酰化和增强子激活。总的来说,我们的研究结果确定了中介体Med23在少突胶质细胞命运决定中的关键作用,并为与MED23突变相关的髓鞘形成发病机制提供了机制性见解。