Zhou Hang, Ma Ke, Liang Shixiao, Li Xiaopeng, Qu Xiaobo
University of WIsconsin-Madison, Department of Civil and Environmental Engineering, Madison, WI, 53706, USA.
School of Vehicle and Mobility, Tsinghua University, Beijing, 100084, China.
Sci Data. 2024 Oct 14;11(1):1123. doi: 10.1038/s41597-024-03795-y.
Automated Vehicles (AVs) promise significant advances in transportation. Critical to these improvements is understanding AVs' longitudinal behavior, relying heavily on real-world trajectory data. Existing open-source trajectory datasets of AV, however, often fall short in refinement, reliability, and completeness, hindering effective performance metrics analysis and model development. This study addresses these challenges by creating a Unified longitudinal trajectory dataset for AVs (Ultra-AV) to analyze their microscopic longitudinal driving behaviors. This dataset compiles data from 14 distinct sources, encompassing various AV types, test sites, and experiment scenarios. We established a three-step data processing: 1. extraction of longitudinal trajectory data, 2. general data cleaning, and 3. data-specific cleaning to obtain the longitudinal trajectory data and car-following trajectory data. The validity of the processed data is affirmed through performance evaluations across safety, mobility, stability, and sustainability, along with an analysis of the relationships between variables in car-following models. Our work not only furnishes researchers with standardized data and metrics for longitudinal AV behavior studies but also sets guidelines for data collection and model development.
自动驾驶车辆(AVs)有望在交通运输领域取得重大进展。对于这些改进而言,关键在于了解自动驾驶车辆的纵向行为,这在很大程度上依赖于现实世界的轨迹数据。然而,现有的自动驾驶车辆开源轨迹数据集在精细化程度、可靠性和完整性方面往往存在不足,这阻碍了有效的性能指标分析和模型开发。本研究通过创建一个用于自动驾驶车辆的统一纵向轨迹数据集(Ultra-AV)来分析其微观纵向驾驶行为,从而应对这些挑战。该数据集汇集了来自14个不同来源的数据,涵盖了各种自动驾驶车辆类型、测试地点和实验场景。我们建立了一个三步数据处理流程:1. 纵向轨迹数据提取,2. 一般数据清理,3. 特定数据清理,以获得纵向轨迹数据和跟车轨迹数据。通过在安全性、机动性、稳定性和可持续性方面的性能评估,以及对跟车模型中变量之间关系的分析,确认了处理后数据的有效性。我们的工作不仅为研究人员提供了用于自动驾驶车辆纵向行为研究的标准化数据和指标,还为数据收集和模型开发设定了指导方针。