Suppr超能文献

基于Boruta算法和深度学习的经皮冠状动脉介入治疗后支架内再狭窄预测模型:血液胆固醇和淋巴细胞比率的作用

Prediction Model for in-Stent Restenosis Post-PCI Based on Boruta Algorithm and Deep Learning: The Role of Blood Cholesterol and Lymphocyte Ratio.

作者信息

Hou Ling, Su Ke, He Ting, Zhao Jinbo, Li Yuanhong

机构信息

Cardiovascular Disease Center, Central Hospital of Tujia and Miao Autonomous Prefecture, Hubei University of Medicine, Enshi, Hubei Province, People's Republic of China.

Department of Central Hospital of Tujia and Miao Autonomous Prefecture, Hubei University of Medicine, Shiyan, Hubei Province, People's Republic of China.

出版信息

J Multidiscip Healthc. 2024 Oct 10;17:4731-4739. doi: 10.2147/JMDH.S487511. eCollection 2024.

Abstract

BACKGROUND

Percutaneous coronary intervention (PCI) is the primary treatment for acute myocardial infarction (AMI). However, in-stent restenosis (ISR) remains a significant limitation to the efficacy of PCI. The cholesterol-to-lymphocyte ratio (CLR), a novel biomarker associated with inflammation and dyslipidemia, may have predictive value for ISR. Deep learning-based models, such as the multilayer perceptron (MLP), can aid in establishing predictive models for ISR using CLR.

METHODS

A retrospective analysis was conducted on clinical and laboratory data from 1967 patients. The Boruta algorithm was employed to identify key features associated with ISR. An MLP model was developed and divided into training and validation sets. Model performance was evaluated using ROC curves and calibration plots.

RESULTS

Patients in the ISR group exhibited significantly higher levels of CLR and low-density lipoprotein (LDL) compared to the non-ISR group. The Boruta algorithm identified 21 important features for subsequent modeling. The MLP model achieved an AUC of 0.95 on the validation set and 0.63 on the test set, indicating good predictive performance. Calibration plots demonstrated good agreement between predicted and observed outcomes. Feature importance analysis revealed that the number of initial stent implants, hemoglobin levels, Gensini score, CLR, and white blood cell count were significant predictors of ISR. Partial dependence plots (PDP) confirmed CLR as a key predictor for ISR.

CONCLUSION

The CLR, as a biomarker that integrates lipid metabolism and inflammation, shows significant potential in predicting coronary ISR. The MLP model, based on deep learning, demonstrated robust predictive capabilities, offering new insights and strategies for clinical decision-making.

摘要

背景

经皮冠状动脉介入治疗(PCI)是急性心肌梗死(AMI)的主要治疗方法。然而,支架内再狭窄(ISR)仍然是限制PCI疗效的一个重要因素。胆固醇与淋巴细胞比值(CLR)是一种与炎症和血脂异常相关的新型生物标志物,可能对ISR具有预测价值。基于深度学习的模型,如多层感知器(MLP),可有助于利用CLR建立ISR的预测模型。

方法

对1967例患者的临床和实验室数据进行回顾性分析。采用Boruta算法识别与ISR相关的关键特征。开发了一个MLP模型,并将其分为训练集和验证集。使用ROC曲线和校准图评估模型性能。

结果

与非ISR组相比,ISR组患者的CLR和低密度脂蛋白(LDL)水平显著更高。Boruta算法确定了21个重要特征用于后续建模。MLP模型在验证集上的AUC为0.95,在测试集上为0.63,表明具有良好的预测性能。校准图显示预测结果与观察结果之间具有良好的一致性。特征重要性分析表明,初始支架植入数量、血红蛋白水平、Gensini评分、CLR和白细胞计数是ISR的重要预测因素。部分依赖图(PDP)证实CLR是ISR的关键预测因素。

结论

CLR作为一种整合脂质代谢和炎症的生物标志物,在预测冠状动脉ISR方面显示出巨大潜力。基于深度学习的MLP模型表现出强大的预测能力,为临床决策提供了新的见解和策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beae/11472739/1a9e80d9ae98/JMDH-17-4731-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验