Suppr超能文献

一种与临床工作流程相结合用于预测住院患者出院日期的机器学习模型的开发与验证

Development and validation of a machine learning model integrated with the clinical workflow for inpatient discharge date prediction.

作者信息

Mahyoub Mohammed A, Dougherty Kacie, Yadav Ravi R, Berio-Dorta Raul, Shukla Ajit

机构信息

Advanced Analytics and Solutions, Virtua Health, Marlton, NJ, United States.

School of Systems Science and Industrial Engineering, Binghamton University, Binghamton, NY, United States.

出版信息

Front Digit Health. 2024 Sep 30;6:1455446. doi: 10.3389/fdgth.2024.1455446. eCollection 2024.

Abstract

BACKGROUND

Discharge date prediction plays a crucial role in healthcare management, enabling efficient resource allocation and patient care planning. Accurate estimation of the discharge date can optimize hospital operations and facilitate better patient outcomes.

MATERIALS AND METHODS

In this study, we employed a systematic approach to develop a discharge date prediction model. We collaborated closely with clinical experts to identify relevant data elements that contribute to the prediction accuracy. Feature engineering was used to extract predictive features from both structured and unstructured data sources. XGBoost, a powerful machine learning algorithm, was employed for the prediction task. Furthermore, the developed model was seamlessly integrated into a widely used Electronic Medical Record (EMR) system, ensuring practical usability.

RESULTS

The model achieved a performance surpassing baseline estimates by up to 35.68% in the F1-score. Post-deployment, the model demonstrated operational value by aligning with MS GMLOS and contributing to an 18.96% reduction in excess hospital days.

CONCLUSIONS

Our findings highlight the effectiveness and potential value of the developed discharge date prediction model in clinical practice. By improving the accuracy of discharge date estimations, the model has the potential to enhance healthcare resource management and patient care planning. Additional research endeavors should prioritize the evaluation of the model's long-term applicability across diverse scenarios and the comprehensive analysis of its influence on patient outcomes.

摘要

背景

出院日期预测在医疗管理中起着至关重要的作用,有助于实现高效的资源分配和患者护理规划。准确估计出院日期可以优化医院运营并促进更好的患者治疗效果。

材料与方法

在本研究中,我们采用了一种系统的方法来开发出院日期预测模型。我们与临床专家密切合作,以确定有助于提高预测准确性的相关数据元素。特征工程用于从结构化和非结构化数据源中提取预测特征。采用强大的机器学习算法XGBoost进行预测任务。此外,所开发的模型被无缝集成到广泛使用的电子病历(EMR)系统中,确保了实际可用性。

结果

该模型在F1分数上的表现比基线估计高出35.68%。在部署后,该模型通过与MS GMLOS保持一致并使多余住院天数减少18.96%,展示了其运营价值。

结论

我们的研究结果突出了所开发的出院日期预测模型在临床实践中的有效性和潜在价值。通过提高出院日期估计的准确性,该模型有潜力加强医疗资源管理和患者护理规划。进一步的研究应优先评估该模型在不同场景下的长期适用性,以及对其对患者治疗效果影响的全面分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98a7/11471729/b69c5b51dcba/fdgth-06-1455446-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验