Peverini Francesca, Aziz Saba, Bashiri Aishah, Bizzarri Marco, Boscardin Maurizio, Calcagnile Lucio, Calcatelli Carlo, Calvo Daniela, Caponi Silvia, Caprai Mirco, Caputo Domenico, Caricato Anna Paola, Catalano Roberto, Cirro Roberto, Cirrone Giuseppe Antonio Pablo, Crivellari Michele, Croci Tommaso, Cuttone Giacomo, de Cesare Gianpiero, De Remigis Paolo, Dunand Sylvain, Fabi Michele, Frontini Luca, Fanò Livio, Gianfelici Benedetta, Grimani Catia, Hammad Omar, Ionica Maria, Kanxheri Keida, Large Matthew, Lenta Francesca, Liberali Valentino, Lovecchio Nicola, Martino Maurizio, Maruccio Giuseppe, Mazza Giovanni, Menichelli Mauro, Monteduro Anna Grazia, Moscatelli Francesco, Morozzi Arianna, Nascetti Augusto, Pallotta Stefania, Papi Andrea, Passeri Daniele, Petasecca Marco, Petringa Giada, Pis Igor, Placidi Pisana, Quarta Gianluca, Rizzato Silvia, Rossi Alessandro, Rossi Giulia, Sabbatini Federico, Scorzoni Andrea, Servoli Leonello, Stabile Alberto, Tacchi Silvia, Talamonti Cinzia, Thomet Jonathan, Tosti Luca, Verzellesi Giovanni, Villani Mattia, Wheadon Richard James, Wyrsch Nicolas, Zema Nicola, Pedio Maddalena
Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Perugia, Via Pascoli s.n.c., 06123 Perugia, Italy.
Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via Pascoli s.n.c., 06123 Perugia, Italy.
Nanomaterials (Basel). 2024 Sep 25;14(19):1551. doi: 10.3390/nano14191551.
This paper presents a comprehensive study of hydrogenated amorphous silicon (a-Si)-based detectors, utilizing electrical characterization, Raman spectroscopy, photoemission, and inverse photoemission techniques. The unique properties of a-Si have sparked interest in its application for radiation detection in both physics and medicine. Although amorphous silicon (a-Si) is inherently a highly defective material, hydrogenation significantly reduces defect density, enabling its use in radiation detector devices. Spectroscopic measurements provide insights into the intricate relationship between the structure and electronic properties of a-Si, enhancing our understanding of how specific configurations, such as the choice of substrate, can markedly influence detector performance. In this study, we compare the performance of a-Si detectors deposited on two different substrates: crystalline silicon (c-Si) and flexible Kapton. Our findings suggest that detectors deposited on Kapton exhibit reduced sensitivity, despite having comparable noise and leakage current levels to those on crystalline silicon. We hypothesize that this discrepancy may be attributed to the substrate material, differences in film morphology, and/or the alignment of energy levels. Further measurements are planned to substantiate these hypotheses.
本文利用电学特性表征、拉曼光谱、光发射和逆光发射技术,对氢化非晶硅(a-Si)基探测器进行了全面研究。非晶硅的独特性质激发了人们对其在物理和医学辐射检测应用方面的兴趣。尽管非晶硅(a-Si)本质上是一种缺陷很多的材料,但氢化显著降低了缺陷密度,使其能够用于辐射探测装置。光谱测量为深入了解非晶硅的结构与电子特性之间的复杂关系提供了线索,增进了我们对特定结构(如衬底的选择)如何显著影响探测器性能的理解。在本研究中,我们比较了沉积在两种不同衬底上的非晶硅探测器的性能:晶体硅(c-Si)和柔性聚酰亚胺薄膜(Kapton)。我们的研究结果表明,沉积在聚酰亚胺薄膜上的探测器灵敏度较低,尽管其噪声和漏电流水平与沉积在晶体硅上的探测器相当。我们推测这种差异可能归因于衬底材料、薄膜形态差异和/或能级排列。计划进行进一步测量以证实这些假设。